Networked Stepper Indexer/Driver
with PROFIBUS Interface

SD17060P
SD31045P
Important User Information

The products and application data described in this manual are useful in a wide variety of different applications. Therefore, the user and others responsible for applying these products described herein are responsible for determining the acceptability for each application. While efforts have been made to provide accurate information within this manual, AMCI assumes no responsibility for the application or the completeness of the information contained herein.

UNDER NO CIRCUMSTANCES WILL ADVANCED MICRO CONTROLS, INC. BE RESPONSIBLE OR LIABLE FOR ANY DAMAGES OR LOSSES, INCLUDING INDIRECT OR CONSEQUENTIAL DAMAGES OR LOSSES, ARISING FROM THE USE OF ANY INFORMATION CONTAINED WITHIN THIS MANUAL, OR THE USE OF ANY PRODUCTS OR SERVICES REFERENCED HEREIN.

No patent liability is assumed by AMCI, with respect to use of information, circuits, equipment, or software described in this manual.

The information contained within this manual is subject to change without notice.

This manual is copyright 2016 by Advanced Micro Controls Inc. You may reproduce this manual, in whole or in part, for your personal use, provided that this copyright notice is included. You may distribute copies of this complete manual in electronic format provided that they are unaltered from the version posted by Advanced Micro Controls Inc. on our official website: www.amci.com. You may incorporate portions of this documents in other literature for your own personal use provided that you include the notice “Portions of this document copyright 2016 by Advanced Micro Controls Inc.” You may not alter the contents of this document or charge a fee for reproducing or distributing it.

Standard Warranty

ADVANCED MICRO CONTROLS, INC. warrants that all equipment manufactured by it will be free from defects, under normal use, in materials and workmanship for a period of 18 months. Within this warranty period, AMCI shall, at its option, repair or replace, free of charge, any equipment covered by this warranty which is returned, shipping charges prepaid, within eighteen months from date of invoice, and which upon examination proves to be defective in material or workmanship and not caused by accident, misuse, neglect, alteration, improper installation or improper testing.

The provisions of the "STANDARD WARRANTY" are the sole obligations of AMCI and excludes all other warranties expressed or implied. In no event shall AMCI be liable for incidental or consequential damages or for delay in performance of this warranty.

Returns Policy

All equipment being returned to AMCI for repair or replacement, regardless of warranty status, must have a Return Merchandise Authorization number issued by AMCI. Call (860) 585-1254 with the model number and serial number (if applicable) along with a description of the problem during regular business hours, Monday through Friday, 8AM - 5PM Eastern. An “RMA” number will be issued. Equipment must be shipped to AMCI with transportation charges prepaid. Title and risk of loss or damage remains with the customer until shipment is received by AMCI.

24 Hour Technical Support Number

24 Hour technical support is available on this product. If you have internet access, start at www.amci.com. Product documentation and FAQ’s are available on the site that answer most common questions.

If you require additional technical support, call (860) 583-1254. Your call will be answered by the factory during regular business hours, Monday through Friday, 8AM - 5PM Eastern. During non-business hours an automated system will ask you to enter the telephone number you can be reached at. Please remember to include your area code. The system will page an engineer on call. Please have your product model number and a description of the problem ready before you call.

We Want Your Feedback

Manuals at AMCI are constantly evolving entities. Your questions and comments on this manual are both welcomed and necessary if this manual is to be improved. Please direct all comments to: Technical Documentation, AMCI, 20 Gear Drive, Terryville CT 06786, or fax us at (860) 584-1973. You can also e-mail your questions and comments to techsupport@amci.com
Table of Contents

General Information
- Important User Information 2
- Standard Warranty 2
- Returns Policy .. 2
- 24 Hour Technical Support Number 2
- We Want Your Feedback 2

About this Manual
- Audience .. 7
- Applicable Units 7
- Navigating this Manual 7
- Manual Conventions 8
- Trademarks and Other Legal Stuff 8
- Revision Record 8
- Manual Layout ... 9

Reference 1: SD17060P & SD31045P Specifications
- Networked Stepper Indexer/Drivers 11
- Indexer Functionality 12
- Driver Functionality 13
- Available Inputs 13
 - Home Input .. 13
 - CW Limit Switch or
 - CCW Limit Switch 14
- Start Indexer Move Input 14
- Emergency Stop Input 14
- Stop Jog or Registration
 - Move Input 14
- Capture Encoder Position Input 14
- Encoder Feedback 14
- General Purpose Input 15
- Encoder Functionality 15
 - Electronic Gearing 15
 - Encoder Registration Move 15
 - Hybrid Control 15
- PROFIBUS Interface Description 16
- Specifications ... 17
 - Front Panel Status LED’s 18
 - PROFIBUS Status LED 18

Reference 2: UL/cUL Recognized Installations
- UL Required Information 19

Reference 3: Motion Control
- Units of Measure 21
- Definition of Count Direction 21
- Definition of Home Position 21
- Definition of Starting Speed 21
- Definition of Target Position 22
 - Relative Coordinates 22
 - Absolute Coordinates 22
- Definition of Acceleration Types 22
 - Linear Acceleration 22
 - Triangular S-Curve Acceleration 23
 - Trapezoidal S-Curve Acceleration 23
- A Simple Move ... 24
- Controlled and Immediate Stops 25
 - Host Control 25
 - Hardware Control 25
- Basic Move Types 25
 - Relative Move 25
 - Absolute Move 26
 - CW/CCW Jog Move 27
 - CW/CCW Registration Move 29
 - Encoder Registration Move 30
- Assembled Moves 31
 - Blend Move ... 32
 - Dwell Move .. 33
- Assembled Move Programming 35
 - Control Bits – Output Data 35
 - Control Bits – Input Data 35
 - Programming Routine 35
 - Saving an Assembled Move in Flash 35
- Indexed Moves ... 36
- Controlling Moves In Progress 37
 - Find Home Moves 37
 - Jog Moves .. 37
 - Registration Moves 37
 - Absolute, Relative, and Encoder Registration Moves 37
- Assembled Moves 37
Reference 3: Motion Control (continued)

Electronic Gearing 38
Motor Resolution 38
ELGearing Multiplier and Divisor 38
How It Works 38
Controlled Stop Conditions 38
Immediate Stop Conditions 38
Advanced Ratio Control 39
Stall Detection 39
Hybrid Control 39
Idle Current Reduction 40
Current Loop Gain 40

Reference 4: Virtual Axis Follower Mode

Description 43

Reference 5: Homing an AMCI Networked Driver

Definition of Home Position 45
Position Preset 45
CW/CCW Find Home Commands 45
Homing Inputs 45
 Physical Inputs 45
 Backplane Inputs 45
Homing Configurations 46
Homing Profiles 46
 Home Input Only Profile 46
 Profile with Network
 Backplane_Proximity_Bit 47
 Profile with Overtravel Limit 48

Reference 6: Configuration Mode Data Format

Modes of Operation 49
 Configuration Mode 49
 Command Mode 49
Multi-Word Format 49
Output Data Format 50
 Configuration Word 0 Format 50
 Configuration Word 1 Format 52
Notes on Other Configuration Words 53
Input Data Format 54
 Configuration Word 0 Format 54
Invalid Configurations 54

Reference 7: Command Mode Data Format

Multi-Word Format 55
Command Bits Must Transition 56
Output Data Format 56
Command Word 0 56
Command Word 1 58
 Description of Motor
 Current Keys 60
Command Blocks 60
 Absolute Move 60
 Relative Move 61
 Hold Move 61
 Resume Move 62
 Immediate Stop 62
 Find Home CW 63
 Find Home CCW 63
 Jog CW ... 64
 Registration Move CW 64
 Virtual Axis Follower Move 65
 Jog CCW .. 65
 Registration Move CCW 66
 Encoder Follower Move 66
 Preset Position 67
 Reset Errors 67
 Run Assembled Move 68
 Preset Encoder Position 68
Programming Blocks 69
 First Block 69
 Segment Block 69
Input Data Format 70
 Format of Position Data Values 70
 Status Word 0 Format 70
 Status Word 1 Format 72
Notes on Clearing a Driver Fault 74
 Reset Driver Fault 74

Reference 8: General Installation Guidelines

Grounding .. 75
 Grounding Electrode System 75
 Ground Bus 75
 Grounding Electrode Conductor 76
 Grounding Wires 76
Avoiding Grounding Problems 76
Surge (EMI) Suppression 77
 Incoming Power 77
 Inductive Loads 78
 System Environment 78
Reference 8: General Installation Guidelines

<table>
<thead>
<tr>
<th>System Layout Considerations</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring Categories for the SD17060P or SD31045P</td>
<td>78</td>
</tr>
<tr>
<td>Minimize Voltages in the System Enclosure</td>
<td>79</td>
</tr>
<tr>
<td>Power Supply Sizing</td>
<td>79</td>
</tr>
<tr>
<td>Component Placement</td>
<td>79</td>
</tr>
<tr>
<td>Conduits to Enclosure</td>
<td>80</td>
</tr>
</tbody>
</table>

Task 1: Installing an AMCI Networked Driver

<table>
<thead>
<tr>
<th>Location</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Handling Guidelines</td>
<td>81</td>
</tr>
<tr>
<td>Prevent Electrostatic Damage</td>
<td>81</td>
</tr>
<tr>
<td>Prevent Debris From Entering the Unit</td>
<td>81</td>
</tr>
<tr>
<td>Remove Power Before Servicing in a Hazardous Environment</td>
<td>81</td>
</tr>
<tr>
<td>Airflow and Wiring Space</td>
<td>81</td>
</tr>
<tr>
<td>Outline Drawings</td>
<td>82</td>
</tr>
<tr>
<td>SD17060P Outline Drawing</td>
<td>82</td>
</tr>
<tr>
<td>SD31045P Outline Drawing</td>
<td>83</td>
</tr>
<tr>
<td>Mounting Methods</td>
<td>83</td>
</tr>
<tr>
<td>Grounding and Powering the System</td>
<td>84</td>
</tr>
<tr>
<td>Installing the Stepper Motor</td>
<td>85</td>
</tr>
<tr>
<td>Outline Drawings</td>
<td>85</td>
</tr>
<tr>
<td>Mounting the Motor</td>
<td>85</td>
</tr>
<tr>
<td>Connecting the Load</td>
<td>85</td>
</tr>
<tr>
<td>Extending the Motor Cable</td>
<td>85</td>
</tr>
<tr>
<td>Installing the Motor Cable</td>
<td>85</td>
</tr>
<tr>
<td>Connecting the Motor</td>
<td>86</td>
</tr>
<tr>
<td>Motor Connector</td>
<td>86</td>
</tr>
<tr>
<td>Interlock Wiring</td>
<td>86</td>
</tr>
<tr>
<td>Motor Wiring</td>
<td>87</td>
</tr>
<tr>
<td>I/O Wiring</td>
<td>88</td>
</tr>
<tr>
<td>Input Wiring</td>
<td>88</td>
</tr>
<tr>
<td>Output Wiring</td>
<td>89</td>
</tr>
<tr>
<td>Encoder Wiring</td>
<td>89</td>
</tr>
<tr>
<td>PROFIBUS Connections</td>
<td>90</td>
</tr>
<tr>
<td>Mini USB Connector</td>
<td>90</td>
</tr>
<tr>
<td>PROFIBUS Network Addressing</td>
<td>90</td>
</tr>
<tr>
<td>PROFIBUS-DP Port</td>
<td>90</td>
</tr>
<tr>
<td>PROFIBUS Cabling</td>
<td>91</td>
</tr>
<tr>
<td>PROFIBUS Status LED</td>
<td>91</td>
</tr>
</tbody>
</table>

Task 2: PROFIBUS Network Configuration

Basic Steps	93
Set the Address Switches	93
PROFIBUS Network Addressing	93
Download the GSD file	93
GSD File Installation	94
Configure the PROFIBUS Network	94
Add the SD17060P/SD31045P to the PROFIBUS Network	96

Task A: (Optional) Using the Net Configurator Utility

USB Connection	97
Download the AMCI Net Configurator Utility	97
Install the AMCI Net Configurator Utility	97
USB Driver Installation	97
Start the AMCI Net Configurator Utility	98
Connect to the SD17060P or SD31045P	98
Controlling the SD17060P or SD31045P	99

Reference 9: Calculating Move Profiles

Constant Acceleration Equations	101
Variable Definitions	101
Total Time Equations	103
S-Curve Acceleration Equations	104
Triangular S-Curve Acceleration	104
Trapezoidal S-Curve Acceleration	106
Determining Waveforms by Values	108
Notes
ABOUT THIS MANUAL

Read this chapter to learn how to navigate through this manual and familiarize yourself with the conventions used in it. The last section of this chapter highlights the manual's remaining chapters and their target audience.

Audience
This manual explains the installation and operation of AMCI’s Networked Stepper Indexer/Drivers. It is written for the engineer responsible for incorporating these products into a design as well as the engineer or technician responsible for their actual installation.

Applicable Units
This manual is applicable to the following AMCI part numbers:

- SD17060P: 115Vac Input, 6.0 Arms, Stepper Indexer/Driver with PROFIBUS interface.
- SD31045P: 230Vac Input, 4.5 Arms, Stepper Indexer/Driver with PROFIBUS interface.

With the exception of power requirements and output current, the information in this manual applies to both units. The term “Networked Driver” is used when the information applies to both drivers.

Navigating this Manual
This manual is designed to be used in both printed and on-line forms. Its on-line form is a PDF document, which requires Adobe Acrobat Reader version 7.0+ to open it. You are allowed to select and copy sections for use in other documents and, if you own Adobe Acrobat version 7.0 or later, you are allowed to add notes and annotations. If you decide to print out this manual, all sections contain an even number of pages which allows you to easily print out a single chapter on a duplex (two-sided) printer.
Manual Conventions

Three icons are used to highlight important information in the manual:

- **NOTE** highlight important concepts, decisions you must make, or the implications of those decisions.
- **CAUTION** tell you when equipment may be damaged if the procedure is not followed properly.
- **WARNING** tell you when people may be hurt or equipment may be damaged if the procedure is not followed properly.

The following table shows the text formatting conventions:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Font</td>
<td>Font used throughout this manual.</td>
</tr>
<tr>
<td>Emphasis Font</td>
<td>Font used for parameter names and the first time a new term is introduced.</td>
</tr>
<tr>
<td>Cross Reference</td>
<td>When viewing the PDF version of the manual, clicking on a blue cross reference jumps you to referenced section of the manual.</td>
</tr>
<tr>
<td>HTML Reference</td>
<td>When viewing the PDF version of the manual, clicking on a red cross reference opens your default web browser to the referenced section of the AMCI website if you have Internet access.</td>
</tr>
</tbody>
</table>

Trademarks and Other Legal Stuff

The AMCI logo is a trademark of Advanced Micro Controls Inc. “PROFIBUS” is a registered trademark of PROFIBUS & PROFINET International (PI). “Adobe” and “Acrobat” are registered trademarks of Adobe Systems Incorporated.

All other trademarks contained herein are the property of their respective holders.

Revision Record

This manual, 940-0S180 is the initial release of this manual. It was first released on May 31st, 2016.
Manual Layout

You will most likely read this manual for one of two reasons:

- If you are curious about the Networked Stepper Indexer/Driver products from AMCI, this manual contains the information you need to determine if these products are the right products for your application. The first chapter, *SD17060P & SD31045P Specifications* contains all of the information you will need to fully specify the right product for your application.

- If you need to install and use a Networked Stepper Indexer/Driver product from AMCI, then the rest of the manual is written for you. To simplify installation and configuration, the rest of the manual is broken down into tasks and references. Using a Networked Stepper Indexer/Driver requires you to complete multiple tasks, and the manual is broken down into sections that explain how to complete each one.

<table>
<thead>
<tr>
<th>Section Title</th>
<th>Starting Page</th>
<th>Section Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD17060P & SD31045P Specifications</td>
<td>11</td>
<td>Complete specifications for the SD17060P and SD31045P products.</td>
</tr>
<tr>
<td>UL/cUL Recognized Installations</td>
<td>19</td>
<td>Installation and environmental guidelines that must be followed in order for the installation of the SD17060P or SD31045P to meet UL/cUL criterion.</td>
</tr>
<tr>
<td>Motion Control</td>
<td>21</td>
<td>Reference information on how the driver can be used to control motion in your application.</td>
</tr>
<tr>
<td>Virtual Axis Follower Mode</td>
<td>43</td>
<td>Reference information on using the SD17060P or SD31045P to follow a virtual motion axis.</td>
</tr>
<tr>
<td>Homing an AMCI Networked Driver</td>
<td>45</td>
<td>Reference information on how the home position of the SD17060P or SD31045P can be set.</td>
</tr>
<tr>
<td>Configuration Mode Data Format</td>
<td>49</td>
<td>Reference information on the format of the network data to and from the SD17060P or SD31045P that is used to configure it.</td>
</tr>
<tr>
<td>Command Mode Data Format</td>
<td>55</td>
<td>Reference information on the format of the network data to and from the SD17060P or SD31045P that is used to command it.</td>
</tr>
<tr>
<td>General Installation Guidelines</td>
<td>75</td>
<td>Reference information on grounding, wiring, and surge suppression, that is applicable to any control system installation.</td>
</tr>
<tr>
<td>Installing an AMCI Networked Driver</td>
<td>81</td>
<td>Task instructions covering how to install an SD17060P or SD31045P on a machine. Includes information on mounting, grounding, and wiring specific to the units.</td>
</tr>
<tr>
<td>PROFIBUS Network Configuration</td>
<td>93</td>
<td>Task Instruction covering how to add an SD17060P or SD31045E to your PROFIBUS network. A Siemens SIMATIC S7-317 controller is used in the example.</td>
</tr>
<tr>
<td>Optional: Using the Net Configurator Utility</td>
<td>97</td>
<td>Instructions on installing and using the AMCI Net Configurator utility with the SD17060P and SD31045P drivers over a USB serial link.</td>
</tr>
<tr>
<td>Calculating Move Profiles</td>
<td>101</td>
<td>Reference information on calculating detailed move profiles.</td>
</tr>
</tbody>
</table>
Notes
Networked Stepper Indexer/Drivers

The AMCI SD17060P is a 6.0Arms micro-stepping driver with a 170Vdc internal bus voltage. The AMCI SD31045P is a 4.4Arms micro-stepping driver with a maximum internal bus voltage of 310Vdc. What makes each drive unique is its built-in indexer that accepts configuration and command data from a host system over the internal PROFIBUS-DP port. This combination of host and driver gives you several advantages:

- Sophisticated I/O processing can be performed in the host (PLC or other controller) before sending commands to the Networked Indexer/Driver.
- All motion logic is programmed in the host, eliminating the need to learn a separate motion control language.
- Eliminating the separate indexer lowers Total System Cost.

Both Networked Drivers can be powered from a nominal 115 Vac, 50/60 Hz source and they will have a 170 Vdc motor bus voltage with this input supply. The SD31045P Drivers can also be powered by a nominal 230 Vac 50/60 Hz source and they will have a 310 Vdc motor bus voltage with this input supply.

The output motor current is fully programmable on these Networked Drivers. The SD17060P Drivers can be programmed from 1.0 Arms to 6.0 Arms, while the SD31045P Drivers can be programmed from 1.0 Arms to 4.4 Arms. It is even possible to change the motor current setting while the move is in progress. These ranges of output currents makes the Networked Drivers compatible with the complete line of stepper motors from AMCI.

In addition to the Motor Current setting, the Motor Steps per Turn, Idle Current Reduction, and Anti-Resonance Circuit features are also fully programmable. If you have used other stepper indexer products from AMCI you will find the programming to be very similar to these products.

All Networked Drivers from AMCI are true RMS motor current control drivers. This means that you will always receive the motor’s rated torque regardless of the Motor Resolution setting. (Drivers that control the peak current to the motor experience a 30% decrease in motor torque when microstepping a motor.) The Networked Drivers automatically switch from RMS to peak current control when the motor is idle to prevent overheating the motor.

In addition to power and motor hookups, the Networked Drivers have three DC inputs and one DC output that are used by the indexer. Configuration data from the host sets the function of these points. The output can be configured to be a Fault Output or a general purpose output. Each input can be individually configured as a:

- CW or CCW Limit Switch
- Home Limit Switch
- Capture Encoder Position Input
- Stop Jog or Registration Move Input
- Start Indexer Move
- Emergency Stop Input
- General Purpose Input

This manual is designed to get you up and running quickly with either the SD17060P or the SD31045P from AMCI. As such, it assumes you have some basic knowledge of stepper systems, such as the resolution you want run your motor at, and the reasons why you’d want to use Idle Current Reduction and the reasons why you wouldn’t. If these terms or ideas are new to you, we’re here to help. AMCI has a great deal of information on our website and we are adding more all the time. If you can’t find what you’re looking for at http://www.amci.com, send us an e-mail or call us. We’re here to support you with all of our knowledge and experience.
Indexer Functionality

The table below lists the functionality offered by the indexer built into the AMCI Networked Drivers.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIBUS Network Protocol</td>
<td>The PROFIBUS interface support the Profibus Specification Ed. 1.0 specification, with the physical interface following the PROFIBUS-DP 2.0 standard. This allows easy setup and communication with a wide range of host controllers.</td>
</tr>
<tr>
<td>Programmable Inputs</td>
<td>Each of the three inputs can be programmed as a Home Limit, Over Travel Limit, Capture Input, Jog Stop, or E-Stop Input. They can also be programmed to accept a quadrature encoder.</td>
</tr>
<tr>
<td>Programmable Output</td>
<td>The single output on the Networked Driver can be programmed as a Fault Output or as a general purpose DC output point.</td>
</tr>
<tr>
<td>Programmable Parameters</td>
<td>Starting Speed, Running Speed, Acceleration, Deceleration, and Accel/Decel Types are fully programmable.</td>
</tr>
<tr>
<td>Homing</td>
<td>Allows you to set the machine to a known position. The Networked Driver can home to a discrete input or to an encoder marker pulse.</td>
</tr>
<tr>
<td>Jog Move</td>
<td>Allows you to jog the motor in either direction based on a bit from your controller.</td>
</tr>
<tr>
<td>Registration Move</td>
<td>Allows you to jog the motor in either direction based on a command bit from your controller. When a controlled stop is issued, the move will output a programmable number of steps before coming to a stop.</td>
</tr>
<tr>
<td>Encoder Registration Move</td>
<td>Uses the count from a quadrature encoder to determine when a move begins to decelerate and stop. Commonly used in spooling/despooling applications.</td>
</tr>
<tr>
<td>Relative Move</td>
<td>Allows you to drive the motor a specific number of steps in either direction from the current location.</td>
</tr>
<tr>
<td>Absolute Move</td>
<td>Allows you to drive the motor from one known location to another known location.</td>
</tr>
<tr>
<td>Assembled Move</td>
<td>Allows you to perform a sequence of relative moves. These moves can be performed with or without stopping between them.</td>
</tr>
<tr>
<td>Indexer Move</td>
<td>Allows you to program a move that is run when one of the programmable inputs makes a transition.</td>
</tr>
<tr>
<td>Hold Move</td>
<td>Allows you to suspend a move and restart it without losing your position value.</td>
</tr>
<tr>
<td>Resume Move</td>
<td>Allows you to restart a previously held move operation.</td>
</tr>
<tr>
<td>Immediate Stop</td>
<td>Allows you to immediately stop all motion if an error condition is detected by your host controller.</td>
</tr>
<tr>
<td>Stall Detection</td>
<td>When the Networked Driver is configured to accept an encoder, the encoder can be used to verify motion when a move command is issued.</td>
</tr>
<tr>
<td>Electronic Gearing</td>
<td>The Networked Driver can be configured to control the position of a motor based on feedback from an external encoder. The ratio of encoder pulses to motor pulses is full programmable and can be changed on-the-fly.</td>
</tr>
<tr>
<td>Hybrid Control</td>
<td>The Networked Driver can be configured to use a motor mounted encoder for rotor position feedback and use this data to dynamically alter motor current to the minimum value needed to achieve motion. This operating mode eliminates the possibility of resonance induced motor stalls and can significantly reduce the operating temperature of the motor.</td>
</tr>
</tbody>
</table>

Table R1.1 Indexer Functionality
Driver Functionality

This table summarizes the features of the stepper motor driver portion of the SD17060P and SD31045P.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 Vdc or 310 Vdc Output Bus</td>
<td>A high voltage output bus means you can derive more high speed torque (power) from your stepper motor.</td>
</tr>
<tr>
<td>RMS Current Control</td>
<td>RMS current control give the Networked Driver the ability to drive the motor at its fully rated power when microstepping. Peak current controllers typically experience a 30% drop in power when microstepping a motor.</td>
</tr>
<tr>
<td>Programmable Motor Current</td>
<td>RMS current supplied to the motor can be programmed in 0.2 amp increments. This allows you to use a Networked Driver with the full line of AMCI stepper motors.</td>
</tr>
<tr>
<td>Programmable Idle Current Reduction</td>
<td>Extends motor life by reducing the motor current when not running. This extends the life of the motor by reducing its operating temperature.</td>
</tr>
<tr>
<td>Programmable Current Loop Gain</td>
<td>Allows you to tailor the driver circuitry to the motor’s impedances, thereby maximizing your motor’s performance.</td>
</tr>
<tr>
<td>Programmable Motor Steps/Turn</td>
<td>Allows you to scale your motor count to a real world value. (counts per inch, counts per degree, etc.)</td>
</tr>
<tr>
<td>Anti-Resonance Circuitry</td>
<td>This circuitry gives the Networked Driver the ability to modify motor current waveforms to compensate for mechanical resonance in your system. This will give you smooth performance over the entire speed range of the motor.</td>
</tr>
<tr>
<td>Motor Interlock</td>
<td>Safety feature that prevents power from being applied to the motor connector if a wire jumper does not exist between two of its pins. A mechanical contact can be used to disable the current to the motor. The voltage between the two interlock pins never exceeds 5Vdc, but 115/230Vac may be present between either of the Interlock pins and either of the power supply inputs.</td>
</tr>
<tr>
<td>Wiring Short Detection</td>
<td>Safety feature that removes power from the motor if a short is detected in one of the windings of the motor.</td>
</tr>
<tr>
<td>Over Temperature Detection</td>
<td>Protects the Networked Driver from damage by removing power from the motor if the internal temperature of the driver exceed a safe operating threshold.</td>
</tr>
</tbody>
</table>

Table R1.2 Driver Functionality

Available Inputs

Each Networked Driver has three DC inputs that accept 3.5 to 27Vdc signals. (5 to 24Vdc nominal) They can be wired as differential, sinking, or sourcing inputs. How the Networked Driver uses these inputs is fully programmable as well as their active states. (Each input can be programmed to act as a Normally Open (NO) or Normally Closed (NC) input.)

Home Input

Many applications require that the machine be brought to a known position before normal operation can begin. This is commonly called “homing” the machine or bringing the machine to its “home” position. Each Networked Driver allows you to define this starting position in two ways. The first is with a Position Preset Command. The second is with a sensor mounted on the machine. When you define one of the inputs as the Home Input, you can issue commands to the Networked Driver that will cause the unit to seek this sensor. How the Networked Driver actually finds the home sensor is described in the reference chapter Homing an AMCI Networked Driver starting on page 45.
Available Inputs (continued)

CW Limit Switch or CCW Limit Switch
Each input can be defined as a CW or CCW Limit Switch. When used this way, the inputs are used to define the limits of mechanical travel. For example, if you are moving in a clockwise direction and the CW Limit Switch activates, all motion will immediately stop. At this point, you will only be able to move in the counter-clockwise direction.

Start Indexer Move Input
Indexer Moves are programmed through the Network Data like every other move. The only difference is that Indexer Moves are not run until a Start Indexer Move Input makes an inactive-to-active state transition. This allows a Networked Driver to run critically timed moves that cannot be reliably started from the network due to data transfer lags.

If Inputs 1 and 2 are programmed as quadrature encoder inputs and Input 3 is programmed as a Start Indexer Move Input, then the quadrature encoder position data will be captured whenever Input 3 transitions. An inactive-to-active state transition will also trigger an Indexer Move if one is pending.

Emergency Stop Input
When an input is defined as an Emergency Stop, or E-Stop Input, motion will immediately stop when this input becomes active. The driver remains enabled and power is supplied to the motor. No move can begin while this input is active.

Stop Jog or Registration Move Input
When an input is configured as a Stop Jog or Registration Move Input, triggering this input during a Jog Move or Registration will bring the move to a controlled stop. The controlled stop is triggered on an inactive-to-active state change on the input. Only Jog Moves and Registration Moves can be stopped with this input type, all other moves will ignore this input.

If Inputs 1 and 2 are programmed as quadrature encoder inputs and Input 3 is programmed as a Stop Jog or Registration Move Input, then the quadrature encoder position data will be captured when Input 3 makes an inactive-to-active transition to bring a Jog or Registration Move to a controlled stop. The encoder position data is not captured if a Jog or Registration Move is not in progress. If you want to capture encoder position data on every transition of Input 3, configure it as a Start Indexer Move Input.

Capture Encoder Position Input
As described in the Start Indexer Move Input and Stop Jog or Registration Move Input sections above, a Networked Driver can be configured to capture the encoder position value on a transition on Input 3.

Encoder Feedback
Each Networked Driver can be configured to accept a quadrature encoder instead of discrete inputs. Inputs 1 and 2 can be programmed to accept the ±A and ±B signals from a quadrature encoder. When using an encoder, you have two additional choices when configuring Input 3. First, the ±Z signal can be wired to Input 3 and used to home the machine. Second, Input 3 can be used to capture the encoder position when it transitions if it is programmed as a Capture Encoder Position Input or a Jog Move Stop Input.

Additional information on the ways to use an encoder with a Networked Driver is described in the Encoder Functionality section on page 15.
Available Inputs (continued)

General Purpose Input

If your application does not require all three inputs, you can configure the unused inputs as General Purpose Inputs. The inputs are not used by the Networked Driver, but the input state is reported in the network data.

Encoder Functionality

Inputs 1 and 2 can be programmed to accept the ±A and ±B signals from a quadrature encoder. When using an encoder, you have two additional choices when configuring Input 3. First, the ±Z signal can be wired to Input 3 and used to home the machine. Second, Input 3 can be used to capture the encoder position when it transitions if it is programmed as a Capture Encoder Position Input or a Jog Move Stop Input.

Using an encoder input gives you the ability to:

- Home the machine to the encoder marker pulse
- Detect motor stall conditions
- Run Encoder Registration Moves
- Enable Hybrid Control on the motor

Electronic Gearing

In this mode, the stepper motor follows the rotation of an external encoder. This encoder is typically attached to another motor. The ratio of encoder pulses to stepper pulses is programmable over a wide range. This mode electronically couples the two motors together through a programmable gear ratio.

Encoder Registration Move

The encoder position acts as a registration mark in an Encoder Registration Move. Typically, the encoder is mounted separately from the motor. With this mode, the Networked Driver will drive the motor until the desired encoder count is reached, at which time the motor begins to decelerate and stop. This functionality is useful in spool winding or unwinding applications, where the motor drives the spool and the encoder measures the material length as it enters or exits the spool. As the spool diameter increases or decreases, the programmed distance remains the same because you are measuring material, not the number of turns.

Hybrid Control

When enabled, this feature gives you servo-like performance without the need to tune servo PID loop parameters. When Hybrid Control is enabled, the Networked Driver uses a motor mounted encoder to feed rotor position information back to the driver. The Networked Driver uses this information during a move to dynamically increase or decrease the current through the motor’s windings to the lowest values needed to achieve motion. This feature eliminates the possibility of resonance related motor stalls. This feature can also dramatically lower the motor’s operating temperature, which will prolong the motor’s life.

When using this feature, a stepper motor will act in a manner very similar to a servo motor. This includes the possibility of a one count dither in position at zero speed. In order to overcome this condition, the Networked Driver allows you to enable and disable the Hybrid Control feature on the fly. When the motor is at rest, a single message disables the Hybrid Control feature, and the motor acts as a stepper system, holding its position without dither. You can enable the Hybrid Control feature using the same message that initiates a move, minimizing the amount of motor current needed to complete the move.
PROFIBUS Interface Description

The network interface is located on the top of the drive, towards the tabbed mounting surface. The network status LED is also located in this area.

The PROFIBUS Interface on the SD17060P and SD31045P drivers is a galvanically isolated RS-485 driver, per Profibus-DP 2.0 standard (DIN19245 part 3). The connector is a female, nine pin, D-sub connector that can be used with widely available connectors and cordsets. BUS_VDC and BUS_GND connections are available on the connector for termination resistors.

![SD17060P TOP VIEW](image)

Two rotary switches set the PROFIBUS address of the driver. The address can be set to any value between 02 and 99. Each device on the PROFIBUS network must have a unique address.

![Figure 1 PROFIBUS-DP Interface Location](image)

The PROFIBUS address is set exclusively by the rotary switches. Any change in address sent by a PROFIBUS Master will be ignored.

The mini USB connector is used to connect the Networked Driver to the Net Configurator utility from AMCI. This utility allows you to read and write configuration data as well as write move commands to the driver. Additional information on *Using the Net Configurator Utility* can be found starting on page 97.

The PROFIBUS-DP connector must be removed from the Networked Driver before using the AMCI Net Configurator utility over the USB connection.

The PROFIBUS Status LED is to the left of the connector as shown in the figure above. The LED itself is hidden from view, but it is very bright, and its glow is easily visible.

A detailed description of the Status LED can be found in the *Specifications* section of this reference chapter starting on page 18.
Specifications

Driver Type
Two bipolar MOSFET H-bridges with 20KHz PWM current control.
SD17060P Drivers: 170Vdc output bus.
SD31045P Drivers: up to 310Vdc output bus.

Physical Dimensions
Width: SD17060P Drivers: 2.1 inches max.
SD31045P Drivers: 2.7 inches max.
Depth: 4.0 inches max.
Height: 6.2 inches
7.0 inches with mounting tabs

Weight
SD17060P Drivers: 2.4 lbs. (1.1 kg.) max.
SD31045P Drivers: 2.7 lbs. (1.25 kg.) max.

Inputs
Electrical Characteristics for all Inputs: Differential. 1500 Vac/dc opto-isolated. Can be wired as single ended inputs. Accepts 3.5 to 27Vdc without the need for an external current limiting resistor.

Output
Electrical Characteristics:
Open Collector/Emitter. 1500 Vac/dc opto-isolated. 30Vdc, 20 mA max.
The Output can be programmed to be a general purpose output or a Fault Output.
The Fault Output is normally on. Turns off under the following conditions:
Reset The driver initialization is not yet complete on power up.
Short Circuit Motor Phase to Phase or Phase to Earth Ground
Over Temp Heat Sink temperature exceeds 90° C (195° F)
No Motor The motor interlock terminals are not connected.
Faults are reported in the Network Input Data and can be cleared through the Network Output Data.

Motor Interlock
Two pins that must be shorted together before power is applied to motor. Can be shorted together through mechanical relay contacts.

Motor Current
SD17060P Drivers: Programmable from 1.0 to 6.0 Arms in 0.2 Amp steps.
SD31045P Drivers: Programmable from 1.0 to 4.4 Arms in 0.2 Amp steps.

Motor Resolution
Programmable to any value from 200 to 32,767 steps per revolution.

Idle Current Reduction
Programmable from 0% to 100% programmed motor current in 1% increments. Motor current is reduced to selected level if there is no motion for 1.5 seconds. Current is restored to full value when motion is started.

Internal Power Fuses
10 Amp Slow Blow. Both Line and Neutral are fused. Fuses are not user replaceable.

Environmental Specifications
Input Power SD17060P Drivers: 95 to 132Vac, 50/60 Hz, 5.0 Apk max.
SD31045P Drivers: 95 to 264Vac, 50/60 Hz, 5.0 Apk max.

Ambient Operating Temperature
................... -4° to +122°F (-20° to +50°C)
Storage Temperature
................... -40° to +185°F (-40° to +85°C)
Humidity 0 to 95%, non-condensing

Motor Specifications
Type 2 phase hybrid. 4, 6, or 8 lead motor
Insulation Minimum 500Vdc phase-to-phase and phase-to-case
Inductance 0.3 mH minimum. 2.5 to 45 mH recommended

Connectors
All mating connectors are included with driver.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Wire</th>
<th>Strip Length</th>
<th>Min./Max. Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>28 - 16 AWG</td>
<td>0.275 inches</td>
<td>1.91/2.23 lb-in (0.22/0.25 Nm)</td>
</tr>
<tr>
<td>Motor</td>
<td>24 - 12 AWG</td>
<td>0.275 inches</td>
<td>4.46/5.35 lb-in (0.5/0.6 Nm)</td>
</tr>
<tr>
<td>Power</td>
<td>24 - 12 AWG</td>
<td>0.275 inches</td>
<td>4.46/5.35 lb-in (0.5/0.6 Nm)</td>
</tr>
</tbody>
</table>
Specifications (continued)

Front Panel Status LED’s

> **Power:** This green LED should be on when power is applied to the drive. If the LED is off, the input voltage is below 95Vac or one or both of the internal fuses are blown. The fuses are not field replaceable.

> **Status:**

- Steady Green Driver OK
- Steady Red Short Circuit Fault
- Over Temperature Fault
- Interlock Missing

A Networked Driver will only detect motor errors when the motor current is enabled.

PROFIBUS Status LED

The PROFIBUS status LED is a bi-color (red/green) LED that indicate the health of the network connection between the PROFIBUS Driver and its host. It is located to the right of the PROFIBUS-DP port. The LED itself is hidden from view, but it is easily visible when flashing or on. Table R1.3 lists the meaning of the various blink codes.

![PROFIBUS Status LED Location](Figure R1.1 PROFIBUS Status LED Location)

<table>
<thead>
<tr>
<th>PROFIBUS Status LED State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Power</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>Communications over USB port.</td>
</tr>
<tr>
<td>On Green</td>
<td>Normal Operation / Data Exchange Mode</td>
</tr>
<tr>
<td>On Red</td>
<td>1) The driver has not received data for an extended period of time. Possible bus line interruption.</td>
</tr>
<tr>
<td>Flashing Red (1 second, 1 Hz)</td>
<td>Parameter or Configuration Error. Invalid data or incorrect data length was received by the PROFIBUS Driver.</td>
</tr>
<tr>
<td>Flashing Red (3 seconds, 1/3 Hz)</td>
<td>1) Incorrect module address selected with rotary switches. Valid range of 02 to 99. 2) Fatal Internal Error. Cycle power to the driver. If the error persists, unit must be returned to AMCI for repairs.</td>
</tr>
</tbody>
</table>

Table R1.3 PROFIBUS Status LED
UL Required Information

If your installation is to meet UL requirements, you must be aware of the following information when using the SD17060P or SD31045P.

- Maximum surrounding air temperature is +50°C
- The driver does not incorporate internal motor overload protection.
- The driver does not provide motor over temperature protection.
- The driver does not provide overspeed protection.
- The driver shall be used in pollution degree 1 or 2 environments. If the driver is mounted in an enclosure, this enclosure must meet these requirements.
- All wiring to the driver shall be R/C (AVLV2), minimum rating of 80°C, 300V, except secondary low-voltage circuit wiring.
- Use 75°C copper conductors only.
- Terminals shall be tighten to manufacturer’s recommended torques
- Power Connector shall be rated for a minimum 12A, 600V, in a pollution degree 2 environment†
- Motor Connector shall be rated for a minimum 16A, 600V, in a pollution degree 2 environment†
- I/O Connector shall be rated for a minimum 8A, 300V, in a pollution degree 2 environment†

† The mating connectors supplied with the SD17060P and SD31045P meet these requirements. Additional mating connectors can be ordered directly from Phoenix Contact under the following part numbers:

<table>
<thead>
<tr>
<th>Location</th>
<th>Phoenix Contact Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1737822</td>
</tr>
<tr>
<td>Motor</td>
<td>1912919</td>
</tr>
<tr>
<td>I/O</td>
<td>1803633</td>
</tr>
</tbody>
</table>

Table R2.1 Mating Connectors
Notes
Units of Measure

Distance: Every distance is measured in steps. Your programming will give you a specific number of steps needed to complete one rotation of the motor shaft. It is up to you to determine how many steps are required to travel the appropriate distance in your application.

Speed: All speeds are measured in steps/second. Since the number of steps needed to complete one shaft rotation is determined by your programming, it is up to you to determine how many steps per second is required to rotate the motor shaft at your desired speed.

Acceleration: The typical unit of measure for acceleration and deceleration is steps/second/second, or steps/second². However, when programming a Networked Driver, all acceleration and deceleration values must be programmed in the unit of measure of steps/second/millisecond.

- To convert from steps/second² to steps/second/millisecond, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into a Networked Driver.

- To convert from steps/second/millisecond to steps/second², multiply the value by 1000. This must be done when converting from the value programmed into a Networked Driver to the value used in the equations.

Definition of Count Direction

In order to match other products from AMCI, this Jog defines some moves in terms of clockwise (CW) and counter-clockwise (CCW) rotation. Clockwise moves will always increase the motor position register that is reported back to the host. When AMCI motors are wired as shown in this manual, a CW move command will result in clockwise shaft rotation when looking at the shaft. Note that it is possible to reverse the direction of rotation by switching the ±B connections on the motor connector.

Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. There are two ways to defining the Home Position. The first is using the Preset Position command to set the Motor Position register to a known value. The second method is using one of the Find Home commands. If you use the unit’s Find Home commands, the motor position and encoder position registers will automatically be set to zero once the home position is reached. Defining a Home Position is completely optional. Some applications, such as those that use the Networked Driver for speed control, don’t require position data at all.

Definition of Starting Speed

The Starting Speed is the speed that most moves will begin and end at. This value is set while configuring the unit and it has a valid range of 1 to 2,999,999 steps/second. This value is typically used to start the move above the motor’s low frequency resonances and, in micro-stepping applications, to limit the amount of time needed for acceleration and deceleration. AMCI does not specify a default value in this manual because it is very dependent on motor size and attached load.

When a move command is sent to a Networked Driver, the unit calculates the entire profile before starting the move or issuing an error message. This chapter explains how the profiles are calculated and the different available moves.
Definition of Target Position

The Target Position is the position that you want the move to end at. There are two ways to define the Target Position, with relative coordinates or absolute coordinates.

Relative Coordinates

Relative coordinates define the Target Position as an offset from the present position of the motor. Most Networked Driver moves use relative coordinates.

- The range of values for the Target Position when it is treated as an offset is ±8,388,607 counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.
- The Motor Position register that is reported back to the host has a minimum range of -32,768,000 to 32,767,999 counts. The only way to move beyond ±8,388,607 counts is with multiple relative moves or jog commands.

Absolute Coordinates

Absolute coordinates treat the Target Position as an actual position on the machine. Note that you must set the Home Position on the machine before you can run an Absolute Move. (See **Definition of Home Position** on the previous page.)

- The range of values for the Target Position when it is treated as an actual position on the machine is ±8,388,607 counts. The move will be clockwise if the Target Position is greater than the Current Position and negative if the Target Position is less than the Current Position.
- The Motor Position register that is reported back to the host has a minimum range of -32,768,000 to 32,767,999 counts. However, you cannot move beyond ±8,388,607 counts with an Absolute Move. The only way to move beyond ±8,388,607 counts is with multiple relative moves or jog commands.

Definition of Acceleration Types

With the exception of Registration Moves, all move commands, including homing commands, allow you to define the acceleration type used during the move. The Networked Driver supports three types of accelerations and decelerations. The type of acceleration used is controlled by the **Acceleration Jerk** parameter. Detailed move profile calculations, including the effect of the **Acceleration Jerk** parameter, can be found in the reference section, **Calculating Move Profiles**, starting on page 101.

Linear Acceleration

When the Acceleration Jerk parameter equals zero, the axis accelerates (or decelerates) at a constant rate until the programmed speed is reached. This offers the fastest acceleration, but consideration must be given to insure the smoothest transition from rest to the acceleration phase of the move. The smoothest transition occurs when the configured Starting Speed is equal to the square root of the programmed Linear Acceleration. Note that other values will work correctly, but you may notice a quick change in velocity at the beginning of the acceleration phase.

![Figure R3.1 Linear Acceleration](image-url)
Definition of Acceleration Types (continued)

Triangular S-Curve Acceleration

When the Acceleration Jerk parameter equals one, the axis accelerates (or decelerates) at a constantly changing rate that is slowest at the beginning and end of the acceleration phase of the move. The Triangular S-Curve type offers the smoothest acceleration, but it takes twice as long as a Linear Acceleration to achieve the same velocity.

Trapezoidal S-Curve Acceleration

When the Acceleration Jerk parameter is in the range of 2 to 5,000, Trapezoidal S-Curve acceleration is used. The Trapezoidal S-Curve acceleration is a good compromise between the speed of Linear acceleration and the smoothness of Triangular S-Curve acceleration. Like the Triangular S-Curve, this acceleration type begins and ends the acceleration phase smoothly, but the middle of the acceleration phase is linear. Figure R3.3 shows a trapezoidal curve when the linear acceleration phase is half of the total acceleration time. With this setting, the Trapezoidal S-Curve acceleration only requires 33% more time to achieve the same velocity as a Linear Acceleration.
A Simple Move

As shown in the figure below, a move from A (Current Position) to B (Target Position) consists of several parts.

![Figure R3.4 A Trapezoidal Profile](image)

1) The move begins at point A, where the motor jumps from rest to the configured Starting Speed. The motor then accelerates at the programmed Acceleration Value until the speed of the motor reaches the Programmed Speed. Both the Acceleration Value and the Programmed Speed are programmed when the move command is sent to the Networked Driver.

2) The motor continues to run at the Programmed Speed until it reaches the point where it must decelerate before reaching point B.

3) The motor decelerates at the Deceleration Value, which is also programmed by the move command, until the speed reaches the Starting Speed, which occurs at the Target Position (B). The motor stops at this point. Note that the acceleration and deceleration values can be different in the move.

Figure R3.4 above shows a Trapezoidal Profile. A Trapezoidal Profile occurs when the Programmed Speed is reached during the move. This occurs when the number of steps needed to accelerate and decelerate are less than the total number of steps in the move.

Figure R3.5 below shows a Triangular Profile. A Triangular Profile occurs when the number of steps needed to accelerate to the Programmed Speed and decelerate from the Programmed Speed are greater than the total number of steps in the move. In this case, the profile will accelerate as far as it can before it has to decelerate to reach the Starting Speed at the Target Position. The Programmed Speed is never reached.

![Figure R3.5 A Triangular Profile](image)
Controlled and Immediate Stops

Once a move is started, there are several ways to stop the move before it comes to an end. These stops are broken down into two types:

- **Controlled Stop:** The axis immediately begins decelerating at the move’s programmed deceleration value until it reaches the configured Starting Speed. The axis stops at this point. The motor position value is still considered valid after a Controlled Stop and the machine does not need to be homed again before Absolute Moves can be run.

- **Immediate Stop:** The axis immediately stops motion regardless of the speed the motor is running at. Since it is possible for the inertia of the load attached to the motor to pull the motor beyond the stopping point, the motor position value is considered invalid after an Immediate Stop. The machine must be homed or the position must be preset before Absolute Moves can be run again.

Host Control

Hold Move Command: This command can be used with some moves to bring the axis to a Controlled Stop. The move can be resumed and finished, or it can be aborted. Not all moves are affected by this command. The section **Basic Move Types**, starting on page 25, describes each move type in detail, including if the move is affected by this command.

Immediate Stop Command: When this command is issued from the host, the axis will come to an Immediate Stop. The move cannot be restarted and the machine must be homed again before Absolute Moves can be run.

Hardware Control

CW Limit and CCW Limit Inputs: In most cases, activating these inputs during a move will bring the axis to an Immediate Stop. The exceptions are the CW/CCW Find Home commands, the CW/CCW Jog Move commands, and the CW/CCW Registration Move commands. The Find Home commands are explained in the reference section, **Homing an AMCI Networked Driver**, which starts on page 45. The CW/CCW Jog Move commands are fully explained on page 27, and the CW/CCW Registration Move commands are fully explained on page 29.

Emergency Stop Input: It is possible to configure an input as an Emergency Stop Input. When an Emergency Stop Input is activated, the axis will come to an Immediate Stop, regardless of the direction of travel. Note that power is not removed from the motor.

Basic Move Types

Relative Move

Relative Moves move an offset number of steps (n) from the Current Position (A). A trapezoidal profile is shown to the right, but Relative Moves can also generate triangular profiles. The command’s Target Position is the move’s offset. The offset can be in the range of ±8,388,607 counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.

1) You do not have to preset the position or home the machine before you can use a Relative Moves. That is, the Position_Invalid status bit can be set.

2) Relative Moves allow you to move your machine without having to calculate absolute positions. If you are indexing a rotary table, you can perform a relative move of 30° multiple times without recalculating new target positions in your controller. If you perform the same action with Absolute Moves, you would have to calculate your 30° position followed by your 60° position, followed by your 90° position, etc.
Relative Moves can be brought to a Controlled Stop by using the Hold Move Command from your host controller. When the command is accepted, the axis will immediately decelerate at the programmed rate and stop. When stopped successfully, the Networked Driver will set a In_Hold_State bit in the input data table. The Relative Move can be restarted with the Resume Move command from the host controller or the move can be aborted by starting another move. The Resume Move command allows you to change the move’s Programmed Speed, Acceleration Value and Type, and the Deceleration Value and Type. The Target Position cannot be changed with the Resume Move Command.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Relative Move by using the Resume Move command. The use of the Hold_Move and Resume_Move bits is further explained in the *Controlling Moves In Progress* section starting on page 37.

Immediate Stop Conditions

- The Immediate Stop bit makes a 0→1 transition in the Network Output Data.
- An inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Absolute Move

Absolute Moves move from the Current Position (A) to a given position (B). (The Networked Driver calculates the direction and number of steps needed to move to the given position and moves that number of steps.) A trapezoidal profile is shown to the right, but Absolute Moves can also generate triangular profiles. The command’s Target Position can be in the range of ±8,388,607 counts. The move will be clockwise if the Target Position is greater than the Current Position and counter-clockwise if the Target Position is less than the Current Position.

1) The *Home Position* of the machine must be set before running an Absolute Move. See the reference section, *Homing an AMCI Networked Driver*, which starts on page 45, for information on homing the machine.

2) The Motor Position must be valid before you can use an Absolute Move. The Motor Position becomes valid when you preset the position or home the machine.

3) Absolute Moves allow you to move your machine without having to calculate relative positions. If you are controlling a rotary table, you can drive the table to any angle without having to calculate the distance to travel. For example an Absolute Move to 180° will move the table to the correct position regardless of where the move starts from.
Basic Move Types (continued)

Absolute Move (continued)

Controlled Stop Conditions

➢ The move completes without error.

➢ You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Absolute Move by using the Resume_Move bit or the move can be aborted by starting another move. The use of the Hold.Move and Resume_Move bits is explained in the Controlling Moves In Progress section starting on page 37.

Immediate Stop Conditions

➢ The Immediate Stop bit makes a 0→1 transition in the Network Input Data.

➢ An inactive-to-active transition on an input configured as an E-Stop Input.

➢ A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

CW/CCW Jog Move

Jog Moves move in the programmed direction as long as the command is active. Two commands are available. The CW Jog Move will increase the motor position count while the CCW Jog Move will decrease the motor position count. These commands are often used to give the operator manual control over the axis.

Jog Moves are also used when you are interested in controlling the speed of the shaft instead of its position. One such application is driving a conveyor belt. To accommodate these applications, the running speed, acceleration, and deceleration of the Jog Move can be changed while the move is in progress.

The CW Limit and CCW Limit inputs behave differently for CW/CCW Jog Moves and CW/CCW Registration Moves than all other move types. Like all moves, activating a limit will bring the move to an Immediate Stop. Unlike other moves, a Jog or Registration move can be started when an end limit switch is active provided that the commanded direction is opposite that of the activated switch. For example, a CW Jog Move can be issued while the CCW limit switch is active. This allows you to move off of an activated end limit switch.
Basic Move Types (continued)

CW/CCW Jog Move (continued)

As shown below, a Jog Moves begins at the programmed Starting Speed, accelerates at the programmed rate to the Programmed Speed and continues until a stop condition occurs. If it is a Controlled Stop Condition, the Networked Driver will decelerate the motor to the starting speed and stop without losing position. If it is an Immediate Stop Condition, the motion stops immediately and the position becomes invalid.

It is possible to change the speed of a Jog Move without stopping the motion. The Programmed Speed, Acceleration, and Deceleration parameters can be changed during a Jog Move. When the Programmed Speed is changed, the motor will accelerate or decelerate to the new Programmed Speed using the new accelerate/decelerate parameter values. If you write a Programmed Speed to the unit that is less than the starting speed, the Jog Move will continue at the previously programmed speed.

Controlled Stop Conditions

- The Jog Move Command bit is reset to “0”.
- An inactive-to-active transition on an input configured as a Stop Jog or Registration Move Input.
- You toggle the Hold_Move control bit in the Network Output Data. The use of the Hold_Move and Resume_Move bits is explained in the Controlling Moves In Progress section starting on page 37.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Note that it is possible to start a move while a CW or CCW Limit Switch is active as long as the direction of travel is opposite that of the activated Limit Switch. For example, it is possible to start a CW Jog Move while the CCW Limit Switch is active.
Basic Move Types (continued)

CW/CCW Registration Move

Similar to a Jog Move, a Registration Move will travel in the programmed direction as long as the command is active. CW Registration Moves increase the motor position count while the CCW Registration Moves decrease the motor position count. When the command terminates under Controlled Stop conditions, the Networked Driver will output a programmed number of steps as part of bringing the move to a stop. Note that all position values programmed with a Registration Move are relative values, not absolute machine positions.

![Figure R3.9 Registration Move](image)

If the Programmed Number of Steps are less than the number of steps needed to bring the axis to a stop based on the Programmed Speed and Deceleration values set with the command, the Networked Driver will decelerate at the programmed Deceleration value until it has output the Programmed Number of Steps and then stop the move without further deceleration.

An additional feature of the Registration Moves is the ability to program the driver to ignore the Controlled Stop conditions until a minimum number of steps have occurred. This value is programmed through the Minimum Registration Move Distance parameter, which is set when you command the Registration Move. The figure below shows how the Minimum Registration Move Distance parameter affects when the Stop Condition is applied to the move. As shown in the second diagram, Controlled Stop conditions are level triggered, not edge triggered. If a Controlled Stop Condition occurs before the Minimum Registration Move Distance is reached and stays active, the move will begin its controlled stop once the Minimum Registration Move Distance is reached.

![Figure R3.10 Min. Registration Move Distance](image)
Basic Move Types (continued)

CW/CCW Registration Move (continued)

Controlled Stop Conditions

- The Registration Move Command bit is reset to “0”.
- A positive transition on an input configured as a Stop Jog or Registration Move Input.

Starting a Registration Move with a Stop Jog or Registration Move Input in its active state will result in a move of (Minimum Registration Distance + Programmed Number of Steps).

- You toggle the Hold_Move control bit in the Network Output Data. The Networked Driver responds by using the programmed Deceleration value to bring the move to a stop, without using the value of the Programmed Number of Steps parameter. A Registration Move does not go into the Hold State if the Hold_Move control bit is used to stop the move and it cannot be restarted.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- An inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Note that it is possible to start a move while a CW or CCW Limit Switch is active as long as the direction of travel is opposite that of the activated Limit Switch. For example, it is possible to start a CW Registration Move while the CCW Limit Switch is active.

Encoder Registration Move

When the Networked Driver is configured to use a quadrature encoder, the position value from the encoder can be used as a registration mark. Once the encoder count is reached, the move will begin to decelerate and stop when the move slows to the configured Starting Speed. Absolute and relative move types are supported. When programming an absolute move, the target position defines the encoder position that must be reached before the move begins to decelerate and stop. When programming a relative move, the sign of the target position determines the direction of the move and its magnitude determines the distance traveled.

1) The encoder is typically mounted separate from the motor. For example, the encoder can measure the length of a flexible and/or stretchable material, or material on a spool. The motor is used to drive the material for the length measured by the encoder, regardless of the slipping, flexing, or stretching, of the material as it is driven by the motor.

2) This is an open-loop move. The encoder does not provide feedback in a closed-loop, servo control fashion. The encoder position is used to decide when the move deceleration begins, not the final position of the move.

3) You do not have to preset the position or home the machine before you can use a relative Encoder Registration Move.
Basic Move Types (continued)

Encoder Registration Move (continued)

The figure below represents either a relative Encoder Registration Move of 11,000 counts or an absolute Encoder Registration Move to position 16,000. The figure shows that the encoder position you program in the move defines the point at which the motor begins to decelerate and stop. It does not define the stopping position as it does in other move types. The endpoint of the move depends on the speed of the motor when the programmed encoder position is reached and the deceleration values. This behavior is different from Absolute and Relative Moves where the position you program into the move is the end point of the move.

![Encoder Registration Move Diagram](image.png)

Figure R3.11 Encoder Registration Move

Controlled Stop Conditions

- The move completes without error
- You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Encoder Registration Move by using the Resume_Move bit. The use of the Hold_Move and Resume_Move bits is explained in the Controlling Moves In Progress section starting on page 37.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW/CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Assembled Moves

All of the moves explained so far must be run individually to their completion or must be stopped before another move can begin. The Networked Driver also gives you the ability to pre-assemble more complex profiles from a series of relative moves that are then run with a single command. Each Assembled Move can consist of 2 to 16 segments. Two types of Assembled Moves exist in a Networked Driver:

- **Blend Move** - A Blend Move gives you the ability to string multiple relative moves together and run all of them sequentially without stopping the shaft between moves. A Blend Move can be run in either direction, and the direction is set when the move command is issued.

- **Dwell Move** - A Dwell Move gives you the ability to string multiple relative moves together, and the Networked Driver will stop between each move for a programed Dwell Time. Because motion stops between each segment, a Dwell Move allows you to reverse direction during the move.
Assembled Moves (continued)

Blend Move

Each Relative Move defines a segment of the Blend Move. The following restrictions apply when programming Blend Moves.

1) Each segment of the Blend Move must be written to the Networked Driver before the move can be initiated.
 - The Networked Driver supports Blend Moves with up to sixteen segments.

2) Each segment is programmed as a relative move. Blend Moves cannot be programmed with absolute coordinates.

3) All segments run in the same direction. The sign of the target position is ignored and only the magnitude of the target position is used. The move’s direction is controlled by the bit pattern used to start the move. If you want to reverse direction during your move, consider using the Dwell Move which is explained starting on page 33.

4) The Programmed Speed of each segment must be greater than or equal to the Starting Speed.

5) The Programmed Speed can be the same between segments. This allows you to chain two segments together.

6) For all segments except for the last one, the programmed position defines the end of the segment. For the last segment, the programmed position defines the end of the move.

7) Once you enter a segment, that segment’s programmed acceleration and deceleration values are used to change the speed of the motor.

8) The blend segment must be long enough for the acceleration or deceleration portions of the segment to occur. If the segment is not long enough, the motor speed will jump to the speed of the next segment without acceleration or deceleration.

The figure below shows a three segment Blend Move that is run twice. It is first run in the clockwise direction, and then in the counter-clockwise direction.

NOTE

The deceleration value programmed with segment 3 is used twice in the segment. Once to decelerate from the Programmed Speed of segment 2 and once again to decelerate at the end of the move.
Assembled Moves (continued)

Blend Move (continued)

1) You do not have to preset the position or home the machine before you can use a Blend Move. Because the Blend Move is based on Relative Moves, it can be run from any location.

2) The Blend Move is stored in the internal memory of the Networked Driver and can be run multiple times once it is written to the unit. The Blend Move data stays in memory until power is removed, the unit is sent new Configuration Data, or a new Blend or Dwell Move is written to the unit. As described in Saving an Assembled Move in Flash on page 35, it is also possible to save a Blend Move to flash memory. This move is restored on power up and can be run as soon as you configure the Networked Driver and enter Command Mode.

3) There are two control bits used to specify which direction the Blend Move is run in. This gives you the ability to run the Blend Move in either direction.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. When this occurs, the Networked Driver decelerates the move at the deceleration rate of the present segment to the Starting Speed and ends the move. Note that your final position will most likely not be the one you commanded. A Blend Move that is brought to a controlled stop with the Hold_Move bit cannot be restarted. The use of the Hold_Move bit is explained in the Controlling Moves In Progress section starting on page 37.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Dwell Move

A Dwell Move gives you the ability to string multiple relative moves together and run all of them sequentially with a single start condition. Like a Blend Move, a Dwell Move is programmed into a Networked Driver as a series of relative moves before the move is started.

Unlike a Blend Move, the motor is stopped between each segment of the Dwell Move for a programmed Dwell Time. The Dwell Time is programmed as part of the command that starts the move. The Dwell Time is the same for all segments. Because the motor is stopped between segments, the motor direction can be reversed during the move. The sign of the target position for the segment determines the direction of motion for that segment. Positive segments will result in clockwise shaft rotation while a negative segment will result in a counter-clockwise shaft rotation.
Assembled Moves (continued)

Dwell Move (continued)

The following figure shows a drilling profile that enters the part in stages and reverses direction during the drilling operation so chips can be relieved from the bit. You could accomplish this Dwell Move with a series of six relative moves that are sent down to the Networked Driver sequentially. The two advantages of a Dwell Move in this case are that the Networked Driver will be more accurate with the Dwell Time then you can be in your control program, and Dwell Moves simplify your program’s logic.

![Dwell Move Diagram](image)

Figure R3.13 Dwell Move

1) You do not have to preset the position or home the machine before you using a Dwell Move. Because the Dwell Move is based on Relative Moves, it can be run from any location.

2) The Dwell Move is stored in the internal memory of the Networked Driver and can be run multiple times once it is written to the unit. The Dwell Move data stays in memory until power is removed, the unit is sent new Configuration Data, or a new Blend or Dwell Move is written to the Networked Driver. As described in Saving an Assembled Move in Flash on page 35, it is also possible to save a Dwell Move to flash memory. This move is restored on power up and can be run as soon as you configure your Networked Driver and enter Command Mode.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. When this occurs, the Networked Driver decelerates the move at the deceleration rate of the present segment to the Starting Speed and ends the move. Note that your final position will most likely not be the one you commanded. A Dwell Move that is brought to a controlled stop with the Hold_Move bit cannot be restarted.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.
Assembled Move Programming

All of the segments in a Blend or Dwell Move must be written to the Networked Driver before the move can be run. Segment programming is controlled with two bits in the Network Output Data and two bits in the Network Input Data. Blend and Dwell Moves are programmed in exactly the same way. When you start the move, a bit in the command data determines which type of Assembled Move is run. In the case of a Blend Move, the signs of the segment’s Target Positions are ignored and all segments are run in the same direction. In the case of a Dwell Move, the signs of the segment’s Target Positions determine the direction of the segment. For Dwell Moves, the Dwell Time is sent to the Networked Driver as part of the command.

Control Bits – Output Data

- **Program_Assembled** bit – Set this bit to tell the Networked Driver that you want to program a Blend or Dwell Move Profile. The Networked Driver will respond by setting the In_Assembled_Mode bit in the Network Input Data. At the beginning of the programming cycle, the Networked Driver will also set the Waiting_For_Assembled_Segment bit to signify that it is ready for the first segment.

- **Read_Assembled_Data** bit – Set this bit to tell the Networked Driver that the data for the next segment is available in the remaining data words.

Control Bits – Input Data

- **In_Assembled_Mode** bit – The Networked Driver sets this bit to tell you that it is ready to accept segment programming data in the remaining output data words. The actual transfer of segment data is controlled by the Waiting_For_Assembled_Segment and Read_Assembled_Data bits.

- **Waiting_For_Assembled_Segment** bit – The Networked Driver will set this bit to signal the host that it is ready to accept the data for the next segment.

Programming Routine

1) The host sets the Program_Assembled bit in the Network Output Data.

2) The Networked Driver responds by setting both the In_Assembled_Mode and Waiting_For_Assembled_Segment bits in the Network Input Data.

3) When the host detects that the Waiting_For_Assembled_Segment bit is set, it writes the data for the first segment in the Network Output Data and sets the Read_Assembled_Data bit.

4) The Networked Driver checks the data, and when finished, resets the Waiting_For_Assembled_Segment bit. If an error is detected, it also sets the Command_Error bit.

5) When the host detects that the Waiting_For_Assembled_Segment bit is reset, it resets the Read_Assembled_Data bit.

6) The Networked Driver detects that the Read_Assembled_Data bit is reset, and sets the Waiting_For_Assembled_Segment bit to signal that it is ready to accept data for the next segment.

7) Steps 3 to 6 are repeated for the remaining segments until the entire move profile has been entered. The maximum number of segments per profile is sixteen.

8) After the last segment has been transferred, the host exits Assembled Move Programming Mode by resetting the Program_Assembled bit.

9) The Networked Driver resets the In_Assembled_Mode and the Waiting_For_Assembled_Segment bits.

Saving an Assembled Move in Flash

The Networked Driver also contains the Save_Assembled_to_Flash bit that allows you to store the Assembled Move in flash memory. This allows you to run the Assembled Move right after power up, without having to go through a programming sequence first. To use this bit, you follow the above programming routine with the Save_Assembled_to_Flash bit set. When you reach step 9 in the sequence, the Networked Driver responds by resetting the In_Assembled_Mode and Transmit Blend Move Segments bits as usual and then it will flash the Status LED. If the LED is flashing green, the write to flash memory was successful. If it flashes red, then there was an error in writing the data. In either case, power must be cycled to the Networked Driver before you can continue. With a limit of 10,000 write cycles, the design decision that requires you to cycle power to the Networked Driver was made to prevent an application from damaging the module by continuously writing to it.
Indexed Moves

All of the moves that have been explained in the chapter up to this point can be started by a transition on one of the inputs instead of a command from the network. If the Indexed Move bit is set when the command is issued, the Networked Driver will not run the move until the configured input makes an inactive-to-active transition. This allows you to run time critical moves that cannot be reliably started from the network because of messaging time delays.

- The input must be configured as a Start Indexed Move Input.
- The move begins with an inactive-to-active transition on the input. Note that an active-to-inactive transition on the input will not stop the move.
- The move command must stay in the Network Output Data while performing an Indexed Move. The move will not occur if you reset the command word before the input triggers the move.
- The move can be run multiple times as long as the move command data remains unchanged in the Network Output Data. The move will run on every inactive-to-active transition on the physical input if a move is not currently in progress. Once a move is triggered, the Start Indexed Move Input is ignored by the Networked Driver until the triggered move is finished.
- As stated above, a move can be run multiple times as long at the move command data remains unchanged. If you wish to program a second move and run it as an Indexed Move type, then you must have a 0→1 transition on the move command bit before the new parameters are accepted. The easiest way to accomplish this is by writing a value of 16#0000 to the command word between issuing move commands.
- A Jog Move that is started as an Indexed Move will come to a controlled stop when the command bit in the Network Output Data is reset to zero.
- It is possible to perform an indexed Registration Move by configuring two inputs for their respective functions. The first input, configured as a Start Indexed Move Input, starts the move and the second, configured as a Stop Jog or Registration Move Input causes the registration function to occur.
- You cannot issue a Hold Command with the Indexed Bit set and have the Hold Command trigger on the inactive-to-active transition of a physical input. Hold Commands are always acted upon as soon as they are accepted from the Network Output Data.
- You cannot issue an Immediate Stop Command with the Indexed Bit set and have the Immediate Stop Command trigger on the inactive-to-active transition of a physical input. Immediate Stop Commands are always acted upon as soon as they are accepted from the Network Output Data. If you need this functionality, consider programming the physical input as an E-Stop Input.
- You cannot issue a Clear Error Command with the Indexed Bit set and have the Clear Error Command trigger on the inactive-to-active transition of a physical input. Clear Error Commands are always acted upon as soon as they are accepted from the Network Output Data.
Controlling Moves In Progress

Each Networked Driver has the ability to place a running move on hold and later resume the move if an error did not occur while the move was in its Hold state. One potential application for this feature is bringing a move to a controlled stop when your controller senses an end-of-stock condition. The move can be put in its Hold state until the stock is replenished and then the move can be resumed.

Note that you do not have to resume a move once it has been placed in its Hold state. You can place a move in its Hold state to prematurely end the move with a controlled stop and issue a new move of any type from the stopped position.

The figure below shows a profile of a move that is placed in its Hold state and later resumed.

![Hold/Resume a Move Profile](image)

Find Home Moves

A Find Home command can be placed in a Hold state but cannot be resumed. This give you the ability to bring a Find Home command to a controlled stop if an error condition occurs.

Jog Moves

Jog Moves can be placed in a Hold state and resumed if error conditions, such as programming errors, have not occurred. New Acceleration, Deceleration, and Programmed Speed parameters can be written to the Networked Driver while a Jog Move is in its hold state. If these parameters are accepted without error, the move can be resumed and it will use the new parameter values.

Registration Moves

Registration Moves can be brought to a controlled stop with the Hold bit, but they cannot be restarted.

Absolute, Relative, and Encoder Registration Moves

Absolute, Relative, and Encoder Registration Moves can be placed in a Hold state and resumed if error conditions, such as programming errors, have not occurred. New Acceleration, Deceleration, and Programmed Speed parameters can be written to the Networked Driver while these moves are in their hold states. If the parameters are accepted without error, the move can be resumed and it will use the new parameter values. Note that a change to the Target Position is ignored.

Assembled Moves

A Blend or Dwell Move can be placed in a Hold state but cannot be resumed. This give you the ability to prematurely end an Assembled Move with a controlled stop. The Assembled Move is not erased from memory and can be run again without having to reprogram it.
Electronic Gearing

The final form of motion control available with a Networked Driver is Electronic Gearing. A quadrature encoder is required but it is not mounted on the motor controlled by the Networked Driver. The encoder is typically mounted on a second motor, but it can be mounted anywhere, including on something as simple as a hand crank.

This mode is sometimes referred to as encoder following, because the motor will change position in response to a change in position of the encoder. AMCI refers to it as Electronic Gearing because the Networked Driver has three parameters that allow you to set any turns ratio you want between the encoder and the motor.

Motor Resolution

This is the same parameter explained at the beginning of this chapter. In Electronic Gearing mode, this parameter sets the number of encoder counts required to complete one rotation of the shaft of the motor driven by the Networked Driver. It has a range of 200 to 32,767. If you set the Motor Resolution parameter to four times the number of lines of your encoder, then by default your motor will complete one rotation for every rotation of the encoder.

ELGearing Multiplier and Divisor

The ratio of these two parameters sets the number of motor rotations per encoder rotation. Each parameter has a range of 1 to 255.

How It Works

The Networked Driver always uses 4X decoding when counting pulses from the encoder. If you set the Motor Resolution parameter to four times the number of encoder lines, and set both of the ELGearing Multiplier and Divisor parameters to 1, then the motor will complete one rotation for every rotation of the encoder’s shaft.

Once placed in Electronic Gearing mode, the Networked Driver monitors the Jog Move command bits in the Network Output Registers. When either of these bits are set, the encoder inputs are monitored for a change in position. When a change is sensed, the Networked Driver will begin to turn the motor within 50 microseconds. An increase in encoder counts will result in clockwise rotation. A decrease in encoder counts will result in counter-clockwise rotation.

The values of the ELGearing Multiplier and Divisor can be changed while electronic gearing motion is occurring. The Networked Driver will accelerate or decelerate the motor to match the new ratio.

Encoder position data can be captured and reported to the host controller while in Electronic Gearing mode by configuring Input 3 as a Capture Encoder Position input.

You must set the Acceleration and Deceleration parameters before you can put the Networked Driver in Electronic Gearing mode.

Controlled Stop Conditions

- The encoder stops moving.
- Both of the Jog Move command bits equal zero.
- Electronic Gearing moves cannot be brought to a controlled stop by using the Hold_Move control bit in the Network Output Registers.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Registers.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached.
Electronic Gearing (continued)

Advanced Ratio Control

The ELGearing Multiplier and Divisor values give you a great deal of control over the ratio of motor turns per encoder turn, but you can achieve even finer control by adjusting the Motor_Resolution parameter.

The Z pulse is not used to correct the encoder position, so you can actually program the Motor_Resolution parameter to any value you want within its valid range. For example, if your encoder outputs 4,096 pulse per turn (a 1,024 line encoder) and you set the Motor_Resolution parameter to 8,192, you will have built a 2:1 gear down into your system before applying the ELGearing Multiplier and Divisors. (Two rotations of the encoder = 8,192 counts = 1 motor rotation.)

This technique allows you to set a median gear ratio in your system that you can adjust on-the-fly by using the ELGearing Multiplier and Divisor parameters.

Stall Detection

Another feature available when using an encoder is stall detection. The encoder must be mounted on the motor controlled by the Networked Driver, which means that you cannot use Stall Detection when using the Electronic Gearing feature. When Stall Detection is enabled, the Networked Driver monitors the encoder inputs for changes while a move is in progress. If the encoder inputs do not change as expected, the move stops and an error bit is reported to your host controller.

In order for the Stall Detection to work correctly, you must program the Encoder_Resolution parameter to its correct value in the Configuration Data of the Networked Driver. The Networked Driver always uses X4 decoding when determining the encoder position value, so the Encoder_Resolution parameter must be set to four times the number of encoder lines. (When using a 1,024 line encoder, the Encoder_Resolution parameter must equal 4,096 for stall detection to work correctly.)

Hybrid Control

The final feature that is available when using an encoder is Hybrid Control. This feature gives you servo like performance from your stepper motor without the need to tune the servo PID loop parameters.

In order for the Hybrid Control feature to work correctly, the Encoder_Resolution parameter must be set to four times the number of encoder lines. (When using a 1,024 line encoder, the Encoder_Resolution parameter must equal 4,096.) The Motor_Resolution parameter must also be set to this value.

The Networked Driver uses the encoder feedback during a move to dynamically increase or decrease the current through the motor’s windings to the lowest values needed to achieve motion. This feature eliminates the possibility of resonance induced motor stalls and can dramatically lower the motor’s operating temperature.

Like a servo system, there is the possibility of a one count dither in position at zero speed and a load induced error in the final position if this feature is always enabled. The “stiffness” of the shaft, (how quickly the system compensates for shaft position error), can be adjusted with a single gain setting. The Networked Driver also allows you to enable and disable the Hybrid Control feature on the fly. When the motor is at rest, a single command will disable the Hybrid Control feature, and the motor will again act as a stepper system, holding its position without dither. You can then enable the Hybrid Control feature using the same command that initiates a move, minimizing the amount of motor current needed to complete the move.

When using Hybrid Control the Networked Driver has an additional status bit, the Motion_Lag bit, that turns on if the position error becomes larger than 360°. This status bit indicates that the speed of the move is not the one that is expected, but the move is still in progress. This can be an indication that something has changed mechanically in the system that has placed an additional load on the motor. Using this bit is the preferred method of performing stall detection. When this bit turns on, monitor the encoder position value for change. If the encoder value is changing, then the motor is heavily loaded but still moving. If the encoder value is not changing, then the motor cannot rotate under load and the move can be stopped by your program. It is also possible to increase the motor current during the move as described in the Description of Motor Current Keys section found on page 60. However, you must be aware of the possibility of overheating the motor when using this feature.
Hybrid Control (continued)

When using Hybrid Control, you should always check the value of the encoder position at the end of every move and make accommodations for any load induced error in the final position.

The stall detection feature that is built into the Networked Driver can be used with the Hybrid Control feature. If the rotor position becomes more than 45° behind the commanded position, the motor will be considered stalled and the move will be terminated. Error bits will be set in the network data to inform you of the stalled condition. Note that the Motion_Lag bit will never be set when using the stall detection feature of the Networked Driver because it will trip before the 360° position error that will set the Motion_Lag bit.

Idle Current Reduction

Idle Current Reduction allows you to prolong the life of your motor by reducing its idling temperature. Values for this parameter range from 0% (no holding torque when idle) to 100%.

Idle current reduction should be used whenever possible. By reducing the current, you are reducing the I^2R losses in the motor. Therefore, the temperature drop in the motor is exponential, not linear. This means that even a small reduction in the idle current can have a large effect on the temperature of the motor.

Note that the reduction values are “to” values, not “by” values. Setting a motor current to 4Arms and the current reduction to 25% will result in an idle current of 1Apk. (The Networked Driver always switches from RMS to peak current control when the motor is idle to prevent motor damage due to excessive heating.)

Current Loop Gain

This feature gives you the ability to adjust the gain of the power amplifiers in the Networked Driver to match the electrical characteristics of your motor. The value of this parameter can range from 1 to 40 with 40 representing the largest gain increase. In general, using a larger gain will increase high speed torque but the motor will run louder. A lower gain will offer quieter low speed operation at the cost of some high speed torque.

The use of this feature is completely optional and you can leave the Current Loop Gain at its default setting of “1” for standard motor performance.

Assuming a stable line voltage of 115Vac, the following gains can be used for AMCI motors. These gain settings are factory suggestions and are average settings for our motors. Your system may benefit from increasing or decreasing these settings. In general, increase the setting by one or two counts to improve high speed performance or decrease the settings by one or two for quieter low speed operation.

<table>
<thead>
<tr>
<th>MOTOR PART #</th>
<th>MOTOR CURRENT</th>
<th>1 A</th>
<th>1.5 A</th>
<th>2 A</th>
<th>3 A</th>
<th>4 A</th>
<th>5 A</th>
<th>6 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2340-130</td>
<td>1 A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM2340-240</td>
<td>1.5 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-450</td>
<td>2 A</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-850</td>
<td>3 A</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-1100</td>
<td>4 A</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Series)</td>
<td>5 A</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Parallel)</td>
<td>12 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Series)</td>
<td>6 A</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Parallel)</td>
<td>7 A</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM42-1800</td>
<td>8 A</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R3.1 Optional 115Vac Current Loop Gain Settings
Current Loop Gain (continued)

When using the SD31045P with a stable 230 Vac line voltage, the following gains can be used for AMCI motors. These gain settings are factory suggestions and are average settings for our motors. Your system may benefit from increasing or decreasing these settings. In general, increase the setting by one or two counts to improve high speed performance or decrease the settings by one or two for quieter low speed operation.

<table>
<thead>
<tr>
<th>MOTOR CURRENT →</th>
<th>1 A</th>
<th>1.5 A</th>
<th>2 A</th>
<th>3 A</th>
<th>4 A</th>
<th>4.4 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2340-130</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM2340-240</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-450</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-850</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-1100</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Series)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Parallel)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Series)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Parallel)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM42-1800</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R3.2 Optional 230Vac Current Loop Gain Settings
Virtual Axis Follower Mode

Description

Each Networked Driver has the ability to be treated as a motion axis, with the host controller periodically sending position and velocity data to the unit. The loop is closed by the Networked Driver by controlling the velocity of the motor.

Programming is similar to a Jog Move in that the position, velocity, acceleration, and deceleration data can be changed while the command is active. This is optional in a Jog Move. When the Networked Driver is used as a motion axis, this data must be updated periodically for accurate control.

Virtual Axis Follower Mode has the following characteristics:

- Position and Velocity are programmed as 32 bit double integer values.
- The loop can be closed with respect to the internal motor position.
- The loop can be closed with respect to the encoder position if an encoder is attached to the Networked Driver.
- A proportional constant is available to control the sharpness of the control.
 AMCI suggests a value of 1 or 2 when using the motor position to control the loop.
 AMCI suggests a value between 10 and 50 when using the encoder position to control the loop.
- A network delay value that can be used to offset some of the network delays incurred when communicating with the Networked Driver. Programmed in milliseconds, using this value is optional and defaults to zero. If used, a good starting point is the update time of the connection in milliseconds.

When using the Networked Driver as an axis follower, it is best to configure the unit to have a starting speed of 1. This will reduce jitter in the motor position at slow speeds or when the position is near its target.

On host platforms that offer motion control, such as the RA ControlLogix platform, a programmed axis can be used to supply data to the Networked Driver by copying position and velocity data from the axis to the registers assigned to the unit. On host platforms that do not offer motion control, position and velocity data can be queued and periodically written out to the Networked Driver.

Blended Moves offer you similar functionality when the move profile is well defined before the move begins. Consider using this functionality for simple profiles. A Blend Move is programmed into the Networked Driver before it is run and the unit precisely controls position and velocity throughout the entire move. Additional information on Blend Move functionality can be found starting on page 32.

The Virtual Axis Follower function cannot be used in systems that continuously rotate in one direction. Unexpected motion will occur when the maximum count value of the motion axis, or the AMCI Networked Driver, is reached.
Notes
Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. Once at the Home Position, the motor position register of a Networked Driver must be set to an appropriate value. If you use the unit’s CW/CCW Find Home commands, the motor position register will automatically be set to zero once the home position is reached. The Encoder Position register will also be reset to zero if the encoder is available and enabled.

Defining a Home Position is completely optional. Some applications, such as those that use a Networked Driver for speed control, don’t require position data at all.

With the exception of Absolute Moves, a Networked Driver can still perform all of its move commands if the Home Position is not defined.

Position Preset

One of the ways to define the Home Position is to issue the Preset Position command to the Networked Driver. On units with integral encoders, both the motor position and the encoder position can be preset separately, and the motor position can also be preset to the encoder position. The motor and encoder position values can be preset anywhere in the range of –8,388,607 to +8,388,607.

When presetting the motor position to the encoder position, the programmed Steps per Turn and Counts per Turn parameter values are used to scale the encoder position before the motor position is set to it. For example, assume that the Encoder Counts per Turn is programmed to 4,096, and the Motor Steps per Turn is programmed to 2,000. If the encoder position is 4,096 when the preset command is issued, the motor position will be set to 2,000.

CW/CCW Find Home Commands

The other choice is to use the driver’s Find Home commands to order the Networked Driver to find the Home Position based on sensors brought into the unit. The CW Find Home command begins searching by rotating the motor shaft in the positive direction and ends when the home sensor triggers while the Networked Driver is rotating in the positive direction at the starting speed. The CCW Find Home command operates in the same way but starts and ends with motion in the negative direction.

Homing Inputs

Four inputs can be used when homing the driver. These inputs are either physical inputs attached to the unit or bits in the network output data words.

Physical Inputs

- **Home Input:** This input is used to define the actual home position of the machine.
- **CW Limit Switch Input:** This input is used to prevent overtravel in the clockwise direction.
- **CCW Limit Switch Input:** This input is used to prevent overtravel in the counter-clockwise direction.

Backplane Inputs

- **Backplane_Proximity_Bit:** A Networked Driver can be configured to ignore changes on the physical homing input until the Backplane_Proximity_Bit makes a 0→1 transition. The Networked Driver will home on the next inactive-to-active change on the physical input once this transition occurs. You must program your host to control the state of this bit.
Homing Configurations

A Networked Driver must have one of its DC inputs configured as the home input before one of the CW/CCW Find Home commands can be issued.

NOTE

1. You do not have to configure and use CW or CCW Limits. If you choose to configure the module this way, then the Networked Driver has no way to automatically prevent overtravel during a homing operation. You must prevent overtravel by some external means, or ensure that the homing command is issued in the direction that will result in reaching the homing input directly.

2. You can use a bit in the Network Output Data (the Backplace_Proximity_Bit) as a home proximity input. Using this bit is completely optional and prevents the Home Input from being acted upon until the Backplace_Proximity_Bit makes a 0→1 transition.

Homing Profiles

NOTE

1. The CW Find Home command is used in all of these examples. The CCW Find Home command will generate the same profiles in the opposite direction.

2. The homing diagrams show CW and CCW direction on their vertical axes. These are the directions that will occur if using an AMCI motor that is wired as shown in this manual. It is possible to reverse the direction of rotation by swapping one connections on one of the motor windings.

Home Input Only Profile

Figure R5.1 below shows the move profile generated by a +Find Home command when you use the Home Input without the Backplace_Proximity_Bit.

![Figure R5.1 Home Input Profile](image)

1. Acceleration from the configured Starting Speed to the Programmed Speed
2. Run at the Programmed Speed until the Home Input activates
3. Deceleration to the Starting Speed and stop, followed by a two second delay.
4. Acceleration to the Programmed Speed opposite to the requested direction.
5. Run opposite the requested direction until the Home Input transitions from Active to Inactive
6. Deceleration to the Starting Speed and stop, followed by a two second delay.
7. Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from inactive to active.

NOTE

If the Home Input is active when the command is issued, the move profile begins at step 5 above.
Homing Profiles (continued)

Profile with Network Backplace_Proximity_Bit

Figure R5.2 below shows the move profile generated by a +Find Home command when you use the Home Input with Network Backplace_Proximity_Bit.

1) Acceleration from the configured Starting Speed to the Programmed Speed
2) Run at the Programmed Speed
3) Ignores the Home Input because Backplace_Proximity_Bit has not made a 0→1 transition.
4) Deceleration towards the Starting Speed when the Backplane Backplace_Proximity_Bit transitions from 0 to 1. The axis will stop as soon as the Home Input becomes active.
5) The Starting Speed is the minimum speed the profile will run at. If the axis decelerates to the Starting Speed before reaching the Home Input, it will continue at this speed.

Figure R5.2 Homing with Proximity

NOTE

Figure R5.2 shows the Backplane Backplace_Proximity_Bit staying active until the Networked Driver reaches its home position. This is valid, but does not have to occur. As stated in step 4, the Networked Driver starts to hunt for the home position as soon and the Backplane Backplace_Proximity_Bit makes a 0→1 transition.
Homing Profiles (continued)

Profile with Overtravel Limit

Figure R5.3 below shows the move profile generated by a +Find Home command when you use:

- CW Overtravel Limit
- Home Input without the Backplace_Proximity_Bit

The profile is generated when you encounter an overtravel limit in the direction of travel. (In this example, hitting the CW limit while traveling in the CW direction.) Hitting the overtravel limit associated with travel in the opposite direction is an Immediate Stop condition. The motor will stop all motion and issue a Home Invalid error to your host.

The Networked Driver will stop with an error if both overtravel limits are activated while the unit is trying to find the home position.

1) Acceleration from the configured Starting Speed to the Programmed Speed
2) Run at the Programmed Speed
3) Hit CW Limit and immediately stop, followed by a two second delay.
4) Acceleration to the Programmed Speed opposite to the requested direction.
5) Run opposite the requested direction until the Home Input transitions from Active to Inactive
6) Deceleration to the Starting Speed and stop, followed by a two second delay.
7) Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from Inactive to Active.

NOTE If the overtravel limit is active when the Find Home Command is active, the profile will begin at step 4.
Modes of Operation

Each AMCI Networked Driver has two operating modes, Configuration Mode and Command Mode. You switch between these modes by changing the state of a single bit in the Network Output Data.

Configuration Mode

Configuration Mode gives you the ability to select the proper configuration for your application without having to set any switches. Typically, the Networked Driver should be configured on every power up. This will help ease system maintenance if you ever need to replace the drive. However, note that the motor will not receive power until the driver is properly configured.

Command Mode

This mode gives you the ability to program and execute stepper moves, and reset errors when they occur. The Networked Driver will always power up in this mode, but a valid configuration must be sent to the Networked Driver before it will apply power to the motor or allow you to issue move commands. The command data formats are described in the following chapter.

Multi-Word Format

Many of the hosts that can be used with the Networked Driver only support 16 bit integers, which limits the range of values from -32,768 to 32,767 or 0 to 65,535. When configuring the Networked Driver, the Starting Speed is transmitted in two separate 16 bit words because this parameter can exceed the sixteen bit range. The table below shows how value is split between the two words.

<table>
<thead>
<tr>
<th>Value</th>
<th>First Word</th>
<th>Second Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>12,345</td>
<td>12</td>
<td>345</td>
</tr>
<tr>
<td>1,234,567</td>
<td>1,234</td>
<td>567</td>
</tr>
</tbody>
</table>

Table R6.1 Multi-Word Format Examples
Output Data Format

The correct format for the Network Output Data when the Networked Driver is in Configuration Mode is shown below.

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Configuration Data</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Configuration Word 0</td>
<td>See below</td>
</tr>
<tr>
<td>1</td>
<td>Configuration Word 1</td>
<td>See below</td>
</tr>
<tr>
<td>2</td>
<td>Starting Speed: Upper Word</td>
<td>Combined value between 1 and 1,999,999 steps/sec.</td>
</tr>
<tr>
<td>3</td>
<td>Starting Speed: Lower Word</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Motor Resolution</td>
<td>200 to 32,767</td>
</tr>
<tr>
<td>5</td>
<td>Hybrid Control Gain</td>
<td>0, 1, 2, or 3</td>
</tr>
<tr>
<td>6</td>
<td>Encoder Resolution</td>
<td>0 to 32,768</td>
</tr>
<tr>
<td>7</td>
<td>Idle Current Reduction</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current (X10)</td>
<td>10 to 60, Even numbers only. Represents 1.0 to 6.0 Arms</td>
</tr>
<tr>
<td>9</td>
<td>Current Loop Gain</td>
<td>1 to 40</td>
</tr>
</tbody>
</table>

Table R6.2 Network Output Data Format: Configuration Mode

Configuration Word 0 Format

<table>
<thead>
<tr>
<th>Configuration Word 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
</tr>
</tbody>
</table>

Bit 15: **Mode** – “1” for Configuration Mode Programming, “0” for Command Mode Programming. Unless a configuration has been saved to Flash memory, the Networked Driver powers up in Command Mode and shows a configuration error. (Hexadecimal value of 6408h.) The Networked Driver will not power the motor or accept commands until a valid configuration is available.

Bit 14: **Disable_Antiresonance** – “1” disables the antiresonance feature. “0” enables the anti-resonance feature of the Networked Driver. The Anti-resonance feature will provide smoother operation in most cases. If you are still experiencing resonance problems with this feature enabled, disable this feature and test the machine again.

Bit 13: **Enable_Stall_Detection** – “0” disables motor stall detection. “1” enables motor stall detection. Only valid when an encoder is used and attached to the motor controlled by the Networked Driver. The Encoder_Resolution parameter must also be programmed.

Bit 11: **Use_Backplane_Proximity** – “0” when the Backplane_Proximity_Bit is not used when homing the Networked Driver. “1” when the Backplane_Proximity_Bit is used when homing the Networked Driver. Note that this bit is not the Backplane_Proximity_Bit, but enables or disables its operation. Do not use the Backplane_Proximity_Bit if you only want to home to the Home Limit Switch. (Leave this bit equal to “0”.)

Bit 10: **Use_The Encoder** – “0” when Quadrature Encoder is not used. “1” to enable a Quadrature Encoder. You must also configure Inputs 1 and 2 to accept quadrature signals and enter a value in Word 6 for the Encoder_Resolution parameter in addition to setting this bit.

Bit 9: **Reserved** – Must equal zero.
Output Data Format (continued)

Configuration Word 0 Format (continued)

Bits 8-6: Input 3 Function – See Table Below

Bits 5-3: Input 2 Function – See Table Below

Bits 2-0: Input 1 Function – See Table Below

<table>
<thead>
<tr>
<th>Bits</th>
<th>Function</th>
<th>Available On</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>General Purpose Input</td>
<td>All Inputs - The input is not used in any functions of the Networked Driver, but its status is reported in the Network Data. This allows the input to be used as a discrete DC input to your controller.</td>
</tr>
<tr>
<td>0 0 1</td>
<td>CW Limit</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 0</td>
<td>CCW Limit</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Start Indexed Move</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Start Indexed Move / Capture Encoder Value</td>
<td>All Inputs, or Input 3 when Inputs 1 & 2 are configured as quadrature encoder inputs. The encoder position value is captured whenever Input 3 transitions. An inactive-to-active state transition will also trigger an Indexed Move if one is pending in the Networked Driver.</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Stop Jog or Registration Move</td>
<td>All Inputs</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Stop Jog or Registration Move & Capture Encoder Value</td>
<td>All Inputs, or Input 3 when Inputs 1 & 2 are configured as quadrature encoder inputs. The encoder position value is captured when Input 3 triggers a controlled stop to a Jog or Registration move.</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Emergency Stop</td>
<td>All Inputs</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Home</td>
<td>All Inputs when using discrete sensors. Input 3 only when using quadrature encoder. Use this configuration value when homing to the Z-Pulse of an encoder.</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Quadrature Encoder Input</td>
<td>Inputs 1 and 2 only. Input 1 is channel A. Input 2 is channel B.</td>
</tr>
</tbody>
</table>

Table R6.3 Configuration Data: Input Function Selections

NOTE

When using a quadrature encoder, you must set bit 10, the Use_Encoder Bit, in addition to programming the inputs to accept quadrature signals. You must also program the Encoder_Resolution parameter in configuration word 6.
Output Data Format (continued)

Configuration Word 1 Format

Configuration Word 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1Fn</td>
<td>OUT1AOCL</td>
<td>OUT1SACL</td>
<td>ReadConfig</td>
<td>BinOutFmt</td>
<td>0000</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16#AAAA</td>
<td>16#EEEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESERVED: Bit must equal zero.

Figure R6.2 Configuration Mode: Config Word Format

Bit 15: Reserved – State ignored.

Bit 14: OUT1 Function – “0” configures Output 1 to be a Fault Output. The output will conduct current until a fault occurs. “1” configures Output 1 to be a general purpose output whose state is determined by a bit in the Command Mode Network Output Data. This output is in an ON state when power is applied to the Networked Driver and it has not yet been configured.

Bit 13: OUT1 Action on Connection Lost – “0” will keep Output 1 at its last value. “1” will set the state of Output 1 to the value specified in Bit 12 of this word.

Bit 12: OUT1 State at Connection Lost – When bit 13 of this word is set, Output 1 will be set to the state of this bit if the network connection is lost.

Bit 11: Read Present Configuration – If this bit is set when you enter Configuration Mode, the Networked Driver responds by placing the present configuration data in the Network Input Data. You cannot write new configuration data to the unit while this bit is set. The format of the Configuration Data is given in the Input Data Format section of this chapter, starting on page 54.

Bit 10: Save Present Configuration – An AMCI Networked Driver will store its configuration data to flash memory when this bit makes a 0→1 transition. The validity of the configuration data is checked before being written. If the data is not correct, the transition on this bit is ignored. If the write to flash completes successfully, the Networked Driver will write 16#AAAA into the last word of the Network Input Data and the Status LED will start flashing green. If the write is unsuccessful, the Networked Driver will write 16#EEEE into the last word of the Network Input Data and the Status LED will start flashing red. Once the Networked Driver issues its response to the Save Present Configuration command, it stops responding to commands and you must cycle power to the unit. This design decision prevents the Networked Driver from responding to constant save commands from the host controller.

1) This feature was added to support users whose host controllers have very limited functionality. Consider the consequences of using this feature. Adding the code necessary to write down the configuration to a Networked Drive on power up or network connection is fairly straightforward on most PLC based hosts. Adding this code allows you to easily change the configuration in the host and easily configure a new drive if you ever need to swap a drive out of the machine. Sample code from AMCI includes this functionality.

2) The endurance of the Flash memory is a minimum of 10,000 write cycles.

3) If using the EDS file to configure the Networked Driver, the configuration data should be entered on the Configuration tab when setting the properties of the driver. This configuration data is written to the driver whenever the network connection is established.
Output Data Format (continued)

Configuration Word 1 Format (continued)

Bit 9: **Binary_Input_Format** – Set to “0” to have the Motor Position, Encoder Position, and Trapped Encoder Position reported in the *Multi-Word Format* shown in table R7.1 on page 55. Set to “1” to have the Motor Position, Encoder Position, and Trapped Encoder Position reported as signed 32-bit integers with the least significant bits reported in the lower numbered (even) 16-bit integer word.

Bit 8: **Binary_Output_Format** – Set to “0” to program the Target Position and Programmed Speed parameters in the *Multi-Word Format* shown in table R7.1 on page 55. Set to “1” to program the Target Position and Programmed Speed parameters in signed 32-bit integer format with the least significant bits in the lower numbered (even) 16-bit integer word.

Bits 7 - 3: **Reserved** – Must equal zero.

Bit 2: **IN3_Active_Level** – Determines the active state of Input 3. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

Bit 1: **IN2_Active_Level** – Determines the active state of Input 2. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

Bit 0: **IN1_Active_Level** – Determines the active state of Input 1. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

The AMCI Networked Driver does not report the state of the inputs when they are configured as encoder inputs (ABZ). The driver reports the state of the *Active Level Bit* for the input.

Notes on Other Configuration Words

- Information on the *Multi-Word Format* used when programming the Starting Speed can be found on page 49.
- Hybrid_Control_Gain controls the “stiffness” of the shaft at zero speed when using the Hybrid Control feature. With a higher gain setting, the Networked Driver will increase the motor current more quickly to compensate for shaft loading.
- Changes to the Idle Current only take effect at the *end of the first move after re-configuration*.
- *Current Loop Gain* settings for all AMCI motors can be found starting on page 40.
The correct format for the Network Input Data when the Networked Driver is in Configuration Mode is shown below.

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Configuration Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Configuration Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Mirror of Output Data Config Word</td>
</tr>
<tr>
<td>2</td>
<td>Mirror of Starting Speed.</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mirror of Motor Resolution</td>
</tr>
<tr>
<td>5</td>
<td>Mirror of Hybrid_Control_Gain</td>
</tr>
<tr>
<td>6</td>
<td>Mirror of Encoder Resolution</td>
</tr>
<tr>
<td>7</td>
<td>Mirror of Idle_Current_Reduction</td>
</tr>
<tr>
<td>8</td>
<td>Mirror of Motor Current (X10)</td>
</tr>
<tr>
<td>9</td>
<td>Mirror of Current Loop Gain</td>
</tr>
</tbody>
</table>

Table R6.4 Network Input Data Format: Configuration Mode

Configuration Word 0 Format

When the Configuration data is valid and accepted, this word mirrors the value of the Configuration Word 0 written to the Networked Driver. When the Networked Driver is not configured, or the data written to it is invalid, then this word has the same format of Status Word 0 when the Networked Driver is in Command Mode. This format is explained in the *Status Word 0 Format* section starting on page 70. On power up, the value of this word will be 6408h if the Networked Driver does not have a valid configuration in its flash memory.

When in Configuration Mode, bit 13 of word 0 is set to “1” when stall detection is enabled. When in Command Mode, bit 13 of word 0 is set to “1” when there is a configuration error. When using the state of bit 13 of word 0 in your logic, always include the state of bit 15 of word 0 to assure that you are only acting on the bit when in the proper mode.

Invalid Configurations

The following configurations are invalid:

1) Setting any of the reserved bits in the configuration words.
2) Setting any parameter to a value outside of its valid range. This includes setting the Lower Word of the Starting Speed to a value greater than 999.
3) You configure two or more inputs to have the same function, such as two CW Limit Switches.
4) You configure the Networked Driver to use an encoder, but you do not configure Inputs 1 and 2 as Quadrature Encoder Inputs.
5) You configure the Networked Driver to use an encoder, but you do not set the Encoder_Resolution value in word 6.
6) Setting the Enable_Stall_Detection Bit without configuring the Networked Driver to use an encoder.
This chapter covers the formats of the Network Output Data used to command the SD17060P or SD31045P as well as the formats of the Network Input Data that contains the responses from the device. The Networked Driver requires ten 16-bit words (20 bytes) for Output Data as well as ten 16-bit words for Input Data. Note that the Networked Driver, when in its factory default state, will power up in Configuration Mode. The Configuration Mode data format is described in the previous chapter.

Multi-Word Format

Many of the hosts that can be used with a Networked Driver only support 16 bit integers, which limits the range of values from -32,768 to 32,767 or 0 to 65,535. The Target Position and Programmed Speed parameters of the Networked Driver can exceed this range. The Motor Position, Encoder Position, and Trapped Encoder Position values reported by the Networked Driver can also exceed these ranges. By default, these parameters and data values are transmitted in two separate words. The table below shows how values are split. Note that negative values are written as negative numbers in both words.

<table>
<thead>
<tr>
<th>Value</th>
<th>First Word</th>
<th>Second Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>12,345</td>
<td>12</td>
<td>345</td>
</tr>
<tr>
<td>1,234,567</td>
<td>1,234</td>
<td>567</td>
</tr>
<tr>
<td>-7,654,321</td>
<td>-7,654</td>
<td>-321</td>
</tr>
</tbody>
</table>

Table R7.1 Multi-Word Format Examples

When configuring the Networked Driver, it is possible to program it to use a 32-bit double integer format when writing the Target Position, Programmed Speed, and Minimum Registration Distance parameters instead of the custom format shown above. This bit is the **Binary_Output_Format Bit**, (Bit 8 of the Configuration Word 1), as described on page 53.

When configuring the Networked Driver, it is also possible to program it to send the Motor Position, Encoder Position, and Trapped Encoder Position in a 32-bit double integer format instead of the custom format shown above. This bit is the **Binary_Input_Format Bit**, (Bit 9 of the Configuration Word), as described on page 53. Examples of the two formats are given below.

<table>
<thead>
<tr>
<th>Multi-Word Format</th>
<th>32 bit Integer Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>First Word</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>-12</td>
<td>0</td>
</tr>
<tr>
<td>1,234,567</td>
<td>1,234</td>
</tr>
<tr>
<td>-7,654,321</td>
<td>-7,654</td>
</tr>
</tbody>
</table>

Table R7.2 Position Data Format Examples

NOTE

The range of values when using the multi-word format is -32,768,000 to 32,767,999. When used in continuous rotation applications, such as control of a conveyor belt, it is possible to overflow these values. When any of the three position values overflow, the value of the associated data words will become indeterminate. AMCI strongly suggests using the signed 32-bit integer format for continuous rotation applications.
Command Mode Data Format

Command Bits Must Transition

Commands are only accepted when the command bit makes a 0→1 transition. The easiest way to do this is to write a value of zero into the Command Word 0 before writing the next command.

This condition also applies when switching from Configuration Mode to Command Mode. If a bit is set in Configuration Word 0 while in Configuration Mode and you switch to Command Mode with the same bit set, the command will not occur because the bit must transition between writes to the unit.

Output Data Format

The following table shows the format of the output network data words when writing command data to the SD17060P or SD31045P.

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Command Parameters</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Figure R7.1 Command Data Format

Command Word 0

<table>
<thead>
<tr>
<th>Command Word 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
</tr>
</tbody>
</table>

Figure R7.2 Command Word 0 Format

Bit 15: **Mode_Select** – “1” for Configuration Mode Programming “0” for Command Mode Programming. A factory default SD17060P or SD31045P powers up in Command Mode and shows a configuration error. (Hexadecimal value of 6408h.) The Networked Driver will not power the motor or accept commands until a valid configuration is written to it.

Bit 14: **Preset_Encoder** – When set to “1” the Networked Driver will preset the Encoder Position to the value stored in Output Words 2 and 3.
COMMAND MODE DATA FORMAT

Command Word 0 (continued)

Bit 13: Run_Assembled_Move – When set to “1” the Networked Driver will run the Assembled Move already stored in memory.

- Assembled_Move_Type – Command Word 1, Bit 9: This bit determines the type of move that is run. When this bit equals “0”, a Blend Move is run. When this bit equals “1”, a Dwell Move is run. When starting a Dwell Move, the Dwell Time is programmed in word 9 of the Command Data. The value is programmed in milliseconds and can range from 0 to 65,536.

- Reverse_Blend_Direction – Command Word 1, Bit 4: This bit is used to determine the direction that the Blend Move will be run in. When this bit equals “0”, the Blend Move runs in the clockwise direction. When this bit equals “1”, the Blend Move is run in the counter-clockwise direction.

Bits 11 & 12: Program_Assembled & Read_Assembled_Data – These bits are used to program the segments of an Assembled Move before the move can be run. Their use is explained in the Assembled Move Programming section of this manual starting on page 35.

Bit 10: Reset_Errors – When set to “1” the Networked Driver will clear all existing errors, reset the Move_Complete bit, and attempt to use the present data to run a new command.

Bit 9: Preset_Position – When set to “1” the Networked Driver will preset the Motor Position to the value stored in Output Words 2 and 3 and reset the Move_Complete bit in the Network Input Data.

Bit 8: Jog_CCW – When set to “1” the Networked Driver will run a Jog Move in the counter-clockwise direction. The full explanation of a CW/CCW Jog Move can be found starting on page 27.

- Registration_Move – Command Word 1, Bit 7: When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

- Enable_Electronic_Gearing – Command Word 1, Bit 6: When this bit equals “1” the Networked Driver will switch its operation to Electronic Gearing mode as described on page 38. While in this mode, the two Jog Move bits are used to enable motor motion. One of these two bits must equal “1” before the motor will follow a change in encoder position.

- Axis Follower Mode – Command Word 1, Bits 12 and 14: If either of these bits equal “1” when the Registration_Move bit equals “0”, the Networked Driver will enter its Axis Follower Mode when the Jog Move bit is set to “1”.

Bit 7: Jog_CW – When set to “1” the Networked Driver will run a Jog Move in the clockwise direction. The full explanation of a CW/CCW Jog Move can be found starting on page 27.

- Registration_Move – Command Word 1, Bit 7: When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

- Enable_Electronic_Gearing – Command Word 1, Bit 6: When this bit equals “1” the Networked Driver will switch its operation to Electronic Gearing mode as described on page 38. While in this mode, the two Jog Move bits are used to enable motor motion. One of these two bits must equal “1” before the motor will follow a change in encoder position.

- Axis Follower Mode – Command Word 1, Bits 12 and 14: If either of these bits equal “1” when the Registration_Move bit equals “0”, the Networked Driver will enter its Axis Follower Mode when the Jog Move bit is set to “1”.

Bit 6: Find_Home_CCW – When set to “1” the Networked Driver will attempt to move to the Home Limit Switch in the counter-clockwise direction. A full explanation of homing can be found in the Homing an AMCI Networked Driver reference chapter starting on page 45.

Bit 5: Find_Home_CW – When set to “1” the Networked Driver will attempt to move to the Home Limit Switch in the clockwise direction. A full explanation of homing can be found in the Homing an AMCI Networked Driver reference chapter starting on page 45.
Command Word 0 (continued)

Bit 4: **Immediate_Stop** – When set to “1” the Networked Driver will stop all motion without deceleration. The Motor Position value will become invalid if this bit is set during a move. Setting this bit when a move is not in progress will not cause the Motor Position to become invalid.

Bit 3: **Resume_Move** – Set to “1” to resume a move that you previously placed in a hold state. Use of the Resume_Move and Hold_Move bits can be found in the Controlling Moves In Progress section of this manual starting on page 37. Note that a move in its hold state does not need to be resumed. The move is automatically cancelled if another move is started in its place.

Bit 2: **Hold_Move** – Set to “1” to hold a move. The move will decelerate to its programmed Starting Speed and stop. The move can be completed by using the Resume_Move bit. Use of the Hold_Move and Resume_Move bits can be found in the Controlling Moves In Progress section of this manual starting on page 37.

Bit 1: **Relative_Move** – Set to “1” to perform a Relative Move using the data in the rest of the Command Data. The full explanation of a Relative Move can be found starting on page 25.

Bit 0: **Absolute_Move** – Set to “1” to perform an Absolute Move using the data in the rest of the Command Data. The full explanation of an Absolute Move can be found starting on page 26.

Command Word 1

| Bit 15: **Enable_Driver** – “0” to disable the motor current, “1” to enable motor current. A valid configuration must be written to the Networked Driver before the driver can be enabled. |
| Bit 14: **Virtual_Encoder_Follower** – When using the Networked Driver as an axis follower, set this bit to ‘1’ to close the position loop with respect to the encoder position. This bit is only available when the unit is configured to use encoder feedback. This bit must equal ‘0’ if the Virtual_Position_Follower bit, bit 12 of this word, is set to ‘1’. |
| Bit 13: **OUT1_Set_State** – When the output is configured as a general purpose output point instead of the Fault Output, this bit controls the state of the output. When this bit equals a “1”, the output is on and conducts current. |
| Bit 12: **Virtual_Position_Follower** – When using the networked Driver as an axis follower, set this bit to ‘1’ to close the position loop with respect to the motor position. This bit must equal ‘0’ if the Virtual_Encoder_Follower bit, bit 14 of this word, is set to ‘1’. |
| Bit 11: **Backplace_Proximity_Bit** – When the Networked Driver is configured to use the Backplace_Proximity_Bit, the unit will ignore the state of the Home Input as long as this bit equals “0”. This bit must equal “1” before a transition on the Home Input can be used to home the machine. Further information on using the Backplace_Proximity_Bit can be found in the Profile with Network Backplace_Proximity_Bit section found on page 47. |
| Bit 10: **Clear_Driver_Fault** – If this bit is set when a Reset Errors Command is issued, (Command Word 0 Bit 10) the Networked Driver will attempt to clear driver errors such as a missing interlock jumper or motor short fault. Note that the driver must be disabled (Command Word 1, Bit 15 = 0), when using this command. |
Command Word 1 (continued)

Bit 9: Assembled_Move_Type – When this bit equals “0”, a Blend Move is started when the Run Assembled Move bit, (Command Word 1, Bit 13) makes a 0→1 transition. When this bit equals “1”, a Dwell Move is started on the transition. The direction of a Blend Move is controlled by the Reverse_Blend_Direction bit, (Command Word 1, Bit 4). In a Dwell Move, the Dwell Time between segments is programmed in Word 9 of the command data.

Bit 8: Indexed_Command – If this bit is set when a move command is issued, the Networked Driver will not run the move immediately, but will instead wait for an inactive-to-active transition on an input configured as a Start Indexer Move input.

Bit 7: Registration_Move – When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

Bit 6: Enable_Electronic_Gearing – Set to “1” to put the Networked Driver in Electronic Gearing mode. Set to “0” for normal operation. A full description of Electronic Gearing mode starts on page 23.

Bit 5: Save_Assembled_to_Flash - Set this bit to save the data of a programmed Assembled Move. This bit is only acted upon this way when the Program_Assembled bit (Command Word 0, Bit 11 makes a 1→0 transition as explained in the Assembled Move Programming section of this manual starting on page 35.

OR

Motor_Current_Key2 - See Description of Motor Current Keys on the following page.

Bit 4: Reverse_Blend_Direction – When you command a Blend Move to run, this bit determines the direction of rotation. Set to “0” for a clockwise Blend Move, ‘1’ for a counter-clockwise Blend Move.

Bit 3: Hybrid_Control – Set to “0” to operate the Networked Driver as a standard stepper system. Set to “1” to enable Hybrid Control. Hybrid Control is explained starting on page 39.

Bit 2: Encoder_Registration_Move – This bit is used with the Relative_Move (Command Word 0, bit 1) or Absolute_Move (Command Word 0, bit 0) bits. Set this bit to “1” to command an Encoder Registration Move. This move will run until the encoder count reaches the programmed relative or absolute value and then the move will begin to decelerate and stop. Must equal “0” for normal relative or absolute moves. A full description of an Encoder Registration Move can be found starting on page 15.

Bit 1: Motor_Current_Key1 – See the description below.

Bit 0: Motor_Current_Key0 – See the description below.
Command Word 1 (continued)

Description of Motor Current Keys
With the exceptions of the CW/CCW Registration Move commands and Run Assembled Move command, it is possible to change the motor current “on the fly” while in Command Mode. To do this, place the new motor current in Word 8 and set the key bits as shown below.

- Control Word 2: Bit 5, (Key2) – “1”
- Control Word 2: Bit 1, (Key1) – “0”
- Control Word 2: Bit 0, (Key0) – “1”

This feature does not work with CW/CCW Registration Move commands because Words 8 and 9 are used to store the registration distance. This feature does not work with the Run Assembled Move command because motor current is set when you program the move segment. For all other commands, the Networked Driver will respond by changing the motor current and writing the new value into the Network Input Data, Word 8. Once the motor current has been set, reset the key bits to all zeros to prevent further changes to the motor current. The motor current can be changed at any time, including during a move.

Setting the motor current to an invalid value does not force a command error. The value will be ignored and the Networked Driver will use the motor current value programmed while in Configuration Mode. Invalid values are:

- Value whose last digit is not even
- Values outside the range of 1.0 to 6.0 amps on the SD17060P
- Values outside the range of 1.0 to 4.4 amps on the SD31045P

Command Blocks
The following section lists the output data format for the sixteen different commands.

Absolute Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0001</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Abs. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Abs. Target Position: Lower Word</td>
<td></td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60 SD31045P: 10 to 44 Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.3 Absolute Move Command Block
Command Blocks (continued)

Relative Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0002</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Rel. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Rel. Target Position: Lower Word</td>
<td>Steps</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
</tbody>
</table>
| 8 | Motor Current | 0.1 A | SD17060P: 10 to 60
SD31045P: 10 to 44
Even numbers only. |
| 9 | Acceleration Jerk | | 0 to 5000 |

Table R7.4 Relative Move Command Block

Hold Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0004</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.5 Hold Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Resume Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0008</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045P: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.6 Resume Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command. This is typically the case when resuming a move, the words are listed as “Unused” to highlight that the target position of a held move cannot be changed when the move is resumed.

Immediate Stop

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0010</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.7 Immediate Stop Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Command Blocks (continued)

Find Home CW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0020</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045P: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.8 Find Home CW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Find Home CCW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0040</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045P: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.9 Find Home CCW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Jog CW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bits 7 & 6 must equal “00”</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60 SD31045P: 10 to 44 Even numbers only</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.10 Jog CW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Registration Move CW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bits 7 & 6 must equal “10”</td>
</tr>
<tr>
<td>2</td>
<td>Stopping Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Stopping Distance: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps per Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Min. Reg. Move Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>9</td>
<td>Min. Reg. Move Distance: Lower Word</td>
<td>Steps</td>
<td></td>
</tr>
</tbody>
</table>

Table R7.11 Registration Move CW Command Block
Command Blocks (continued)

Virtual Axis Follower Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080 or 16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bit 14 or 12 must equal “1” and the other “0”. Bit 7 must equal “0”</td>
</tr>
<tr>
<td>2</td>
<td>Lower 16 bits of 32 bit Position</td>
<td>Steps</td>
<td>Signed 32 bit double integer value</td>
</tr>
<tr>
<td>3</td>
<td>Upper 16 bits of 32 bit Position</td>
<td>Steps</td>
<td>Signed 32 bit double integer value</td>
</tr>
<tr>
<td>4</td>
<td>Lower 16 bits of 32 bit Velocity</td>
<td>Steps per Second</td>
<td>Signed 32 bit double integer value</td>
</tr>
<tr>
<td>5</td>
<td>Upper 16 bits of 32 bit Velocity</td>
<td>Steps per Second</td>
<td>Signed 32 bit double integer value</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Proportional Coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Network Delay</td>
<td>milliseconds</td>
<td></td>
</tr>
</tbody>
</table>

Table R7.12 Axis Follower Move Command Block

When using motor position loop control, set the Proportional Coefficient to 1 or 2. When using encoder position loop control, set the Proportional Coefficient to a value between 10 and 50.

Network Delay can be ignored in most applications and set to zero.

Jog CCW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bits 7 & 6 must equal “00”</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60 SD31045P: 10 to 44 Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.13 Jog CCW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Registration Move CCW

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bits 7 & 6 must equal “10”</td>
</tr>
<tr>
<td>2</td>
<td>Stopping Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Stopping Distance: Lower Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps per Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps per Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Min. Reg. Move Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>9</td>
<td>Min. Reg. Move Distance: Lower Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
</tbody>
</table>

Table R7.14 Registration Move CCW Command Block

Encoder Follower Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080 or 16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Bit 6 must equal “1”</td>
</tr>
<tr>
<td>2</td>
<td>Electronic Gearing Numerator</td>
<td></td>
<td>1 to 255</td>
</tr>
<tr>
<td>3</td>
<td>Electronic Gearing Denominator</td>
<td></td>
<td>1 to 255</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60 SD31045P: 10 to 44 Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.15 Encoder Follower Move Command Block
Command Blocks (continued)

Preset Position

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0200</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Position Preset Value: Upper Word</td>
<td></td>
<td>Combined value between -8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Position Preset Value: Lower Word</td>
<td>Steps</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.16 Preset Position Command Block

Unused words are ignored by the Network Driver and can be any value, including parameter values in the previous command.

Presetting the position will also reset the Move_Complete status bit in the Network Input Data.

Reset Errors

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58 Set bit 10 to clear motor faults</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.17 Reset Errors Command Block

Unused words are ignored by the Network Driver and can be any value, including parameter values in the previous command.

Resetting errors will also reset the Move_Complete status bit in the Network Input Data.
Command Blocks (continued)

Run Assembled Move

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#2000</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Unused with Blend Move</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dwell Time with Dwell Move</td>
<td>milliseconds</td>
<td>0 to 65,535</td>
</tr>
</tbody>
</table>

Table R7.18 Run Assembled Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Preset Encoder Position

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#4000</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Encoder Preset Value: Upper Word</td>
<td>Steps</td>
<td>Combined value between −8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Encoder Preset Value: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.19 Preset Encoder Position Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Programming Blocks

The following blocks are used to program an Assembled Move. Both of the moves, Blend Move, and Dwell Move, are programmed exactly the same way. The bit configuration used when starting the move determines which type of Assembled Move is run.

First Block

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0800</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.20 Assembled Move First Programming Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values from the previous command.

Once the first block is transmitted, the Networked Driver responds by setting bits 8 and 9 in Status Word 0. (See **Status Word 0 Format** starting on page 70.) Once these are set, you can then start transmitting Segment Blocks.

Segment Block

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#1800</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Rel. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between -8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Rel. Target Position: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060P: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045P: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R7.21 Assembled Move Segment Programming Block

Note that each Segment Block starts with bits 11 and 12 set in the Command Word 0 word (16#1800). When the Networked Driver sees bit 12 of Command Word 0 set, it will accept the block and reset bit 9 in Status Word 0. When your program sees this bit reset, it must respond by resetting bit 12 of Command Word 0. The Networked Driver will respond to this by setting bit 9 in Status Word 0 and the next Segment Block can be written to the Networked Driver. You can write a maximum of sixteen Segment Blocks for each Assembled Move.
Input Data Format

The correct format for the Network Input Data when the Networked Driver is in Command Mode is shown below.

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Command Mode Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Status Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Status Word 1</td>
</tr>
<tr>
<td>2</td>
<td>Motor Position: Upper Word</td>
</tr>
<tr>
<td>3</td>
<td>Motor Position: Lower Word</td>
</tr>
<tr>
<td>4</td>
<td>Encoder Position: Upper Word</td>
</tr>
<tr>
<td>5</td>
<td>Encoder Position: Lower Word</td>
</tr>
<tr>
<td>6</td>
<td>Trapped Encoder Position: Upper Word</td>
</tr>
<tr>
<td>7</td>
<td>Trapped Encoder Position: Lower Word</td>
</tr>
<tr>
<td>8</td>
<td>Programmed Motor Current (X10)</td>
</tr>
<tr>
<td>9</td>
<td>Value of Acceleration Jerk Parameter</td>
</tr>
</tbody>
</table>

Table R7.22 Network Input Data Format: Command Mode

Format of Position Data Values

The format of the Motor Position, Encoder Position, and Trapped Encoder Position values is controlled by the Binary_Input_Format bit in the configuration data written to the Networked Driver. (See Configuration Word 1 Format, bit 9 starting on page 52.) When the Binary_Input_Format bit equals “0”, the position values are reported with the bottom three digits of the value in the lower word (000 - 999) and the remaining digits in the upper word. See Multi-Word Format on page 55 for an explanation of this format. When the Binary_Input_Format bit equals “1”, the position values are reported as 32-bit signed integers, with the least significant bits in the lower word.

The range of values when using the multi-word format is -32,768,000 to 32,767,999. When used in continuous rotation applications, such as control of a conveyor belt, it is possible to overflow these values. When any of the three position values overflow, the value of the associated data words will become indeterminate. AMCI strongly suggests using the signed 32-bit integer format for continuous rotation applications.

Status Word 0 Format

<table>
<thead>
<tr>
<th>Status Word 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 15: Mode_Flag – Set to “1” if in Configuration Mode, and set to “0” if in Command Mode. The Networked Driver powers up in Command Mode and shows a configuration error. The Networked Driver will not power the motor or accept commands until a valid configuration is written to it.</td>
</tr>
<tr>
<td>Bit 14: Module_OK – “1” when the Networked Driver is operating without a fault, “0” when an internal fault condition exists.</td>
</tr>
</tbody>
</table>
Input Data Format (continued)

Status Word 0 Format (continued)

- **Bit 13**: **Configuration_Error** – “1” on power up before a valid configuration has been written to the Networked Driver or after any invalid configuration has been written to the driver. “0” when the Networked Driver has a valid configuration written to it.

 When in Command Mode, bit 13 of word 0 is set to “1” when there is a configuration error. When in Configuration Mode, bit 13 of word 0 is set to “1” when stall detection is enabled. When using the state of bit 13 of word 0 in your logic, always include the state of bit 15 of word 0 to assure that you are only acting on the bit when in the proper mode.

- **Bit 12**: **Command_Error** – “1” when an invalid command has been written to the Networked Driver. This bit can only be reset by the Reset_Errors bit, Command Word 0, Bit 10. Note that setting the motor current to a value outside the range of 1.0 to 6.0 amps on the SD17060P, or 1.0 to 4.4 amps on the SD31045P, does not force a command error. The driver simply ignores the new value and uses the value programmed when the unit was in Configuration Mode.

- **Bit 11**: **Input_Error** – “1” when:
 - Emergency Stop input has been activated
 - Either of the End Limit Switches activates during any move operation except for homing
 - Starting a Jog Move in the same direction as an active End Limit Switch
 - If the opposite End Limit Switch is reached during a homing operation.

 This bit is reset by a **Reset Errors** command. The format of the command is given on page 67.

- **Bit 10**: **Position_Invalid** – “1” when:
 - A configuration is written to the Networked Driver
 - The motor position has not been preset and the machine has not been homed
 - The machine has not been homed
 - The Network Connection has been lost and re-established
 - An Immediate or Emergency Stop has occurred
 - An End Limit Switch has been reached
 - A motor stall has been detected.

 Absolute moves cannot be performed while the position is invalid.

- **Bit 9**: **Waiting_For_Assembled_Segment** – The Networked Driver sets this bit to tell the host that it is ready to accept the data for the next segment of your assembled move profile. Its use is explained in the **Assembled Move Programming** section of this manual starting on page 35.

- **Bit 8**: **In_Assembled_Mode** – The Networked Driver sets this bit to signal the host that it is ready to accept assembled move profile programming data. Its use is explained in the **Assembled Move Programming** section of this manual starting on page 35.

- **Bit 7**: **Move_Complete** – Set to “1” when the present Absolute, Relative, Jog, Registration, or Assembled Move command completes without error. This bit is reset to “0” when the next move command is written to the Networked Driver, when the position is preset, or a Reset Errors command is issued to the unit. This bit is also set along with the Command_Error bit (Bit 12 of this word), when any Jog Move or Registration Move parameters are outside of their valid ranges. This bit is not set on a command error for any other type of command. Finally, this bit is not set at the end of a homing operation.

- **Bit 6**: **Decelerating** – Set to “1” when the present move is decelerating. Set to “0” at all other times.

- **Bit 5**: **Accelerating** – Set to “1” when the present move is accelerating. Set to “0” at all other times.
Input Data Format (continued)

Status Word 0 Format (continued)

Bit 4: **At_Home** – Set to “1” when a homing command has completed successfully, “0” at all other times.

Bit 3: **Stopped** – Set to “1” when the motor is not in motion. Note that this is stopped for any reason, not just a completed move. For example, an Immediate Stop command during a move will set this bit to “1”, but the Move_Complete Bit, (bit 7 above) will not be set.

Bit 2: **In_Hold_State** – Set to “1” when a move command has been successfully brought into a Hold State. Hold States are explained in the Controlling Moves In Progress section starting on page 22.

Bit 1: **Moving_CCW** – Set to “1” when the motor is rotating in a counter-clockwise direction.

Bit 0: **Moving_CW** – Set to “1” when the motor is rotating in a clockwise direction.

Status Word 1 Format

Status Word 1

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive_Is_Enabled</td>
<td>Stall_Detected</td>
<td>OUT1_State</td>
<td>Heartbeat_Bit</td>
<td>Limit_Condition</td>
<td>Invalid_Jog_Change</td>
<td>Motion_Lag</td>
<td>Driver_Fault</td>
<td>Connect_Lost</td>
<td>Temp</td>
<td>90C</td>
<td>IN3Active</td>
<td>IN2_Active</td>
<td>IN1_Active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure R7.5 Command Mode: Status Word 1 Format

Bit 15: **Drive_Is_Enabled** – Set to “1” when the motor driver section of the Networked Driver is enabled and current is available to the motor. Set to “0” when the motor driver section is disabled. If this bit is set to “1”, the motor current remains present when an E-Stop input is active. Motor current is removed if there is a Driver_Fault (Bit 7 below) regardless of the state of this bit. Motor current is also removed if the motor is idle and Idle Current Reduction is programmed to its To 0% setting.

Bit 14: **Stall_Detected** – Set to “1” when a motor stall has been detected.

Bit 13: **OUT1_State** – Present actual state of Output 1. When this bit is set to “1”, the output is in its on state and conducts current.

Bit 12: **Reserved Bit** – Will always equal zero.

Bit 11: **Heartbeat_Bit** – This bit will change state approximately every 500 milliseconds. Monitor this bit to verify that the unit and network connection are operating correctly. Note that this bit is only available while the Networked Driver is in Command Mode.

Bit 10: **Limit_Condition** – This bit is set if an End Limit Switch is reached during a move. This bit will be reset when the Limit Switch changes from its active to inactive state, or when a Reset Errors Command is issued.

Bit 9: **Invalid_Jog_Change** – Set during a Jog Move if parameters are changed to invalid values. Parameters that can be changed during a Jog Move are Programmed Speed, Acceleration, and Deceleration. Set while in Electronic Gearing mode if the Numerator or Denominator are set outside their range of 1 to 255.

Bit 8: **Motion_Lag** – When using the Hybrid Control feature, this bit will equal “1” if the actual rotor position is more than 360° behind the commanded position. This indicates a heavily loaded motor and the encoder position should be monitored for a stalled condition.
Input Data Format (continued)

Status Word 1 Format (continued)

Bit 7: Driver_Fault – If the driver section of the Networked Driver is enabled, this bit will be a “1” during a Overtemperature Fault, a Short Circuit Fault, or when the Interlock Jumper is missing. This fault can be cleared by issuing a Reset Errors programming block with the Clear_Driver_Fault bit, (Command Word 1, bit 10) set to “1”. For additional information, see Notes on Clearing a Driver Fault on page 74. Note that this bit is not set if the Interlock Jumper is missing when power is applied to the driver.

Bit 6: Connection_Was_Lost – If the physical network connection is lost at any time, this bit will be set when the connection is re-established. The Input_Error bit will also be set. Note that this bit is not set if the communication loss is on the protocol level, not the physical level.

Bit 5: Reserved – Will always equal zero.

Bit 4: Temperature_Above_90C – This bit is set to “1” when the processor internal temperature exceeds 90°C. At this point, the heatsink temperature is typically above 80°C. If this bit trips often and you want to lower the operating temperature of the unit, consider changing how the device is mounted, or installing a fan to force additional airflow through the device.

Bit 3: Reserved – Will always equal zero.

Bit 2: IN3_Active – “1” when Input 3 is in its active state. The active state of the input is programmed as explained in the Configuration Word 1 Format section starting on page 52.

Bit 1: IN2_Active – “1” when Input 2 is in its active state. The active state of the input is programmed as explained in the Configuration Word 1 Format section starting on page 52.

Bit 0: IN1_Active – “1” when Input 1 is in its active state. The active state of the input is programmed as explained in the Configuration Word 1 Format section starting on page 52.

NOTE
The Networked Driver does not report the state of the inputs when they are configured as encoder inputs (ABZ). The driver reports the state of the Active Level Bit for the input which is set in Configuration Mode.
Notes on Clearing a Driver Fault

A Driver Fault occurs when there is an over temperature condition, a short circuit condition in the motor, or the Interlock jumper is missing.

When a Driver Fault occurs, the driver sets bit 7 of Status Word 1 in the Network Input Data. (See Status Word 1 Format on page 72 for a full description of Status Word 1.) Once you have cleared the fault condition, you can reset the Driver Fault with the following Command Block:

Reset Driver Fault

<table>
<thead>
<tr>
<th>Data Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R7.23 Reset Driver Fault Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Once the command block is accepted by the Networked Driver, it will respond by resetting bit 7 in Status Word 1 of the Network Input Data.

NOTE After this procedure, there will still be no current to the motor. This is because the Enabled_Driver Bit, (bit 15 of Command Word 1 in the Network Output Data), must be reset when writing down the Reset Driver Fault Command Block. Setting this bit in the next command block will re-enable the motor.
This chapter gives general information on installing electronic controls in an industrial environment including the importance of proper wiring, grounding, and surge suppression. If you are responsible for installing an SD17060P or SD31045P, make sure you are familiar with these practices and follow them when installing the unit.

These instructions assume a solidly grounded system, which is used in a vast majority of modern industrial systems. As defined by the IEEE, a solidly grounded system is one in which the neutral of a generator, power transformer, or grounding transformer is directly connected to the system ground or earth. The installation of ungrounded systems is not covered by these instructions.

WARNING

This chapter is presented as a tool in the hopes of avoiding common installation problems. It is not a substitute for the safety practices called out in local electrical codes or, in the United States, the National Electrical Code published by the National Fire Protection Association. If any conflicts exist, local and national codes must be followed. It is the responsibility of the user to determine what installation practices must be followed to conform to all local and national codes.

Safety is the single most important objective of any electrical installation. The system must be safe to use and it must be able to detect unsafe conditions and remove power when these conditions occur.

The second important objective of an electrical installation is proper and consistent operation. Proper operation can be achieved through:

- Proper Grounding
- Suppression of electrical noise generated by the machine.
- Suppression of electrical noise coming in from the environment. (Other machines, power surges, etc.)

Grounding

Proper grounding is the single most important consideration for a safe installation. Proper grounding also ensures that unwanted electrical currents, such as those induced by electromagnetic noise, will be quickly shunted to ground instead of flowing through the machine.

Earth ground connections on electronic controls are one of two types.

- **Protective Earth Connection:** Point that must be tied to Earth for the safe operation of the device. (Protection against electric shock should the device be damaged.)
- **Functional Earth Connection:** Point that must be tied to Earth to improve noise immunity of the device.

For all AMCI Networked Drivers, the Protective Earth Connection is any mounting surface of the unit. (The SD31045P Drivers also have a grounding lug on their heatsinks.) The Functional Earth Connection of the Networked Drivers is the ground terminal (GND) on the power connector.

Grounding Electrode System

The Grounding Electrode System is the common name for the building's earth ground infrastructure. This system defines earth-ground potential within a building and is the central ground for all electrical equipment.

Ground Bus

AMCI strongly suggests the use of a ground bus in each system enclosure. The ground bus is simply a metal bar with studs or tapped holes for accepting grounding connections in the enclosure. The ground bus is the only component in the enclosure that is directly connected to your Grounding Electrode System. Therefore, the ground bus is becomes the central grounding point for the enclosure and its equipment.
Grounding (continued)

Grounding Electrode Conductor

Connection of the ground bus to the Grounding Electrode System is made with the Grounding Electrode Conductor. The Grounding Electrode Conductor should be the shortest length of stranded wire or braid possible. The American NEC allows a length of up to six feet, but shorter is better. A shorter length will help shunt high frequency noise to the Grounding Electrode System.

In extremely noisy environments, it is sometimes advisable to run two wires from the ground bus to the GES. The length of these two wires should differ by 20% to 30% so they offer different impedances to the noise frequencies being shunted to earth ground.

The minimum sizes for the Grounding Electrode Conductor are #8 AWG stranded wire or 1" braid, but larger sizes may be needed depending on the total ground fault current your system can generate. The actual size is determined by the size of the largest conductor in the system.

The American NEC allows the use of a solid wire for the Grounding Electrode Conductor but this should be avoided. High frequency currents (electrical noise) travel along the surface of a conductor. Heavy gauge stranded wire and braid both have large surface areas, solid conductors do not. Therefore, stranded wire and braid have a much lower effective resistance to electrical noise.

Grounding Wires

Grounding wires are used to connect the pieces of equipment to your ground bus. AMCI strongly suggests using #8 AWG stranded wire or 1" wire braid for all grounding connections. The American NEC allows the use of solid wire for grounding wires but this should be avoided for the same reasons they should not be used for the Grounding Electrode Conductor.

Avoiding Grounding Problems

As stated before, there are two reasons to properly ground a system. The first reason is to protect human life. A properly designed grounding system will be able to detect potential shock currents and remove power from the system. The second reason is to improve system reliability by shunting electrical noise currents to earth instead of allowing them to flow through the system where they can disrupt the operation of electronic controls.

The entire grounding system, even though conductive, is not meant to carry current except under fault conditions.

NOTE Under normal operating conditions, the grounding system should not carry any current at all.

Ground Fault Interrupt (GFI) circuits depend on this condition to work correctly. Any ground current flowing through a GFI is considered a fault condition and the GFI immediately opens to remove power from the faulted circuit.

By this definition, electrical noise and other transient currents such as inductive spikes are considered fault currents. The fact that these currents are very short lived and of relatively small power allows them to be safely shunted without tripping a Ground Fault Interrupt circuit.
Avoiding Grounding Problems (continued)

Grounding problems occur when the grounding system carries currents during normal operation or when it cannot shunt high frequency electrical currents to earth.

AMCI generally encounters three types of grounding problems in systems that use AMCI equipment.

➢ **Ground Loops:** A ground loop occurs when AC or DC return currents can travel through the system ground path in addition to their normal return path. This can cause damaging currents to electronics that share the power supply.

Ground loops in AC systems can occur when the neutral conductor is bonded to the Grounding Electrode System in more than one place. Under the right conditions, AC line currents may end up flowing through the protective ground system, which may include exposed metal surfaces and therefore represent a touch shock hazard. Designing an effective ground fault detection system is well beyond the scope of this manual. Please refer to the NEC and other design guidelines for your area.

➢ **Ground Shift:** Remote machines or monitoring stations will usually be connected to a different point on the Grounding Electrode System than a local system. A voltage potential can exist between these stations due to resistance between the grounding electrodes and earth. A similar problem exists on machines that are not properly bonded together. The resistance of a poor bond in the system will result in a voltage potential across the connection when current is forced through it. Incorrectly installed sensor or communications cables that run between these systems can be damaged by these Ground Shift potentials.

➢ **High Impedance Grounds:** The grounding system shows a high impedance to high frequency noise currents and these signals are not properly shunted to earth. The high impedance to high frequency noise is caused by capacitance and inductance in the system. Use #8 AWG stranded wire or 1” wire braid for all ground connections and keep connections as short as possible to minimize capacitance and inductance in the grounding system.

Surge (EMI) Suppression

Incoming Power

In many systems, three phase power is brought to the machine and the control system is powered from one of these phases. In these cases, good quality, clean AC power can only be achieved by properly conditioning the three phase power, not just the single phase used by the control system. This is generally achieved by placing surge suppressors across each phase where the three phase enters the system and at all inductive loads that are on the three phase branch. This includes inductive loads on any other machine that may be powered by the same feeder circuit.

![Figure R8.2 Surge Suppression on Power Inputs](image-url)
Surge (EMI) Suppression (continued)

Inductive Loads

All inductive devices in the system, such as AC and DC motors, motor starters, contactors, relays and solenoids, must have surge suppression devices installed across their coils.

Because the Networked Driver is responsible for commutating the stepper motor, surge suppressors cannot be installed at the motor connector. The best way to avoid noise issues when using a stepper motor is proper cable installation. Keep the motor wires as short as possible. Consider twisting the winding pairs together to minimize radiated noise. Use shielded cable if you must extend the cable and tie the shield to earth ground at the Networked Driver motor connector only.

System Environment

When designing the physical layout of your system it is important to review the environment your control system will be placed in. This should include reviews of both the physical and electrical environments.

- Check the quality of the AC power that will feed the machine.
- Check for adequate surge suppression on machines that will be near your new system.

A review of the electrical environment includes checking the quality of the AC power that will feed your new system as well as checking the quality of the point where your system will be connected to the building’s Grounding Electrode System.

When checking the quality of the AC power for your system, be sure to check every machine that may be powered by the same feeder circuit. It is in AMCI's experience that nuisance faults can be caused by another system on the same feeder circuit that does not have adequate surge suppression devices.

System Layout Considerations

The first step to achieving a clean system layout is classifying the wires and cables used in your system based on the amount of power they carry. Refer to the following table to help you categorize your wires and cables.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control and AC Power - High power conductors that are more tolerant of electrical noise but are also more likely to carry electrical noise than the other categories. Corresponds to IEEE levels 3 & 4</td>
<td>AC power lines High power digital AC I/O lines High power digital DC I/O lines High power I/O lines typically connect to devices such as mechanical switches, relays, and solenoids. Stepper Motor wiring also falls into this category.</td>
</tr>
<tr>
<td>2</td>
<td>Signal and Communication - Low power conductors that are less tolerant of electrical noise but are also less likely to carry electrical noise than category 1. Corresponds to IEEE levels 1 & 2</td>
<td>Analog I/O lines Low power digital AC I/O lines Low power digital DC I/O lines Ethernet or other Communications Cables Low power I/O lines typically connect to devices such as proximity switches, photo sensors, and encoders.</td>
</tr>
<tr>
<td>3</td>
<td>Intra-enclosure - Similar characteristics to category 2 conductors, these conductors interconnect system components within an enclosure.</td>
<td>Low voltage DC power cables Communications Cables</td>
</tr>
</tbody>
</table>

Table R8.1 Conductor Categories

Wiring Categories for the SD17060P or SD31045P

- AC Power Input: Class 1 (AC power line)
- DC Input cables (also included encoder cabling): Class 2 (Low power digital DC input line)
- DC output cable: Class 2 (Low Power digital DC output line)
- Motor Outputs: Class 1 (High Power DC outputs)
System Layout Considerations (continued)

Minimize Voltages in the System Enclosure
You will want to minimize the voltage in the enclosure that houses your control system to minimize EMI and voltage transients. In many cases, three phase is used to power the machine's motors and the control system is powered by one of the phases. Ideally, the three phase power, it's disconnect, fuses, filtering, and all three phase controls such as motor starters, are housed in their own enclosure. The single phase used to power the control system is then brought into a separate enclosure built exclusively for the control system.

Power Supply Sizing
A properly sized power supply is vital to system operation. The best guideline that we can give you is to buy the best supply your budget allows and consider the surge requirements of the components you are attaching to the supply.

Component Placement
Once you have established the proper categories of all of the system's wires and cables and determined all of your components you can determine proper component placement and conductor routing within the system enclosure.

The following guidelines are for noise immunity only. Follow all local codes for safety requirements.

There are three general guidelines to follow when placing components:

- Keep as much physical space between the classes of conductors as possible.
- Minimize the distance that conductors run in parallel with each other to minimize capacitive coupling.
- If conductors must cross, they should do so at right angles to minimize inductive coupling.

If you have a PLC in your system, be sure to consider the spacing of the modules within the rack. Do not place an AC output module next to low level DC input module unless absolutely necessary. For example, consider placing low level input modules on the left side of the rack, high power AC output modules on the right side, and medium power I/O in the center. This should help you maximize the spacing of I/O wiring within the enclosure.

System Layout Considerations (continued)

Conduits to Enclosure

When designing the layout of your system, be sure to include enough conduits to house the different categories of cabling. To guard against coupling noise from one conductor to another, follow the spacing guidelines in table R8.2 below. These spacing values should be followed for routing cables both inside and outside of an enclosure. Of course, sometimes these guidelines cannot be followed, such as when the connection points on a controller are spaced closer together than these guidelines recommend.

<table>
<thead>
<tr>
<th>Category</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>These conductors can be routed in the same cable tray, raceway, or conduit as machine power conductors of up to 600Vac. Power conductors cannot feed larger than 100HP devices.</td>
</tr>
</tbody>
</table>
| 2 | If they must cross power feeds, they must do so at right angles.
 | Route in a raceway or conduit separate from all category 1 conductors and properly shield where applicable.
 | Any metal wireway or conduit that houses the conductor must be bonded along its entire length and bonded to the enclosure at its entry point.
 | If in a continuous metal wireway or conduit, route at least 3" from category 1 conductors of less than 20A, 6" from category 1 conductors of greater than 20A and 12" from any category 1 conductor of any amperage of the circuit is greater than 100 kVA.
 | If not in a continuous metal wireway or conduit, route at least 6" from category 1 conductors of less than 20A, 12" from category 1 conductors of greater than 20A and 24" from any category 1 conductor of any amperage of the circuit is greater than 100 kVA.
 | Route at least 5 feet away from high-voltage enclosures or sources of rf/microwave radiation. |
| 3 | Route these conductors external to all raceways in the enclosure or in a raceway separate from all category 1 conductors. Use the same spacing rules given for category 2 conductors. |

Table R8.2 Conductor Routing Guidelines

Installing an AMCI Networked Driver

The Networked Driver is designed to be mounted in an enclosure that is close to the motor. On small machines, this may be the same enclosure that the rest of the control system is mounted in. On large machines, this is typically a small enclosure that only houses the Networked Driver.

- A minimum of two conduits are required for the enclosure that houses a Networked Driver. One conduit is for the DC I/O and ethernet cable, and the other is for AC power and the motor connections. Three conduits may be required if the code in your area does not allow you to run the motor connections with AC power or if the noise generated on the motor connections is injected into your AC lines.
- If 230Vac is the only line voltage available in a system that is using the SD17060P Drivers, a step down transformer that is rated for a minimum of 800VA must be installed. Consider installing this transformer in the enclosure with the SD17060P Networked Driver. This will prevent any noise placed on the AC line by the SD17060P from leaving the enclosure.
- For the SD31045P Drivers, if 115Vac is the only line voltage available in the system and you require the 310Vdc motor bus, a step up transformer that is rated for a minimum of 800VA must be installed. Consider installing this transformer in the enclosure with the SD31045P. This will prevent any noise placed on the AC line by the SD31045P from leaving the enclosure.
- Like all motors, stepper motors are noise generators and must be properly grounded when installed.
- Keep the motor wires as short as possible. Consider twisting the winding pairs together to minimize radiated noise. Use shielded cable if you must extend the cable and tie the shield to earth ground at the motor connector of the Networked Driver only.
1.1 Location
AMCI Networked Drivers are suitable for use in industrial environments that meet the following criteria:

- Only non-conductive pollutants normally exist in the environment, but an occasional temporary conductivity caused by condensation is expected.
- Transient voltages are controlled and do not exceed the impulse voltage capability of the product’s insulation.

Note that these criteria apply to the system as a whole. These criteria are equivalent to the *Pollution Degree 2* and *Over Voltage Category II* designations of the International Electrotechnical Commission (IEC).

1.2 Safe Handling Guidelines

1.2.1 Prevent Electrostatic Damage

Electrostatic discharge can damage the Networked Driver. Follow these guidelines when handling the unit.

1) Touch a grounded object to discharge static potential before handling the module.
2) Work in a static-safe environment whenever possible.
3) Wear an approved wrist-strap grounding device.
4) Do not touch the pins of the bus connector or I/O connector.
5) Do not disassemble the module
6) Store the module in its anti-static bag and shipping box when it is not in use.

1.2.2 Prevent Debris From Entering the Unit

While mounting a devices, be sure that all debris (metal chips, wire strands, tapping liquids, etc.) is prevented from falling into the driver. Debris may cause damage to the unit or unintended machine operation with possible personal injury.

1.2.3 Remove Power Before Servicing in a Hazardous Environment

Remove power before removing or installing a Networked Driver in a hazardous environment.

1.3 Airflow and Wiring Space

To ensure adequate space for wiring and convectional cooling, you need:

- 2.0" (50 mm) of space above and below the driver
- 1.5" (37 mm) of space to the left and right of the driver
- 1.0" (25 mm) of space in front of the driver

Drivers should be mounted with the orientation shown in the outline drawings below. Holes are in the top and bottom of the driver cover for convectional cooling. If you have an active cooling system such as enclosure fans, the drivers should still be mounted as shown below, but you should be able to mount the drivers closer together.
1.4 Outline Drawings

1.4.1 SD17060P Outline Drawing

Figure T1.1 SD17060P Outline Drawing

Min. screw length = 0.31" (7.9) + thickness of mounting panel. Max. screw length = 0.62" (15.8) + thickness of mounting panel.
1.5 Mounting Methods

There are two ways to mount an AMCI Networked Driver. The first method is with the #10-32 screws into the side panel of the SD17060P or the back panel of the SD31045P. The second method is by the mounting tabs. Mounting tabs are for #6 screws.

WARNING
When using the panel mounting method that uses the #10-32 screws, minimum and maximum screw lengths must be observed to prevent a screw from shorting to the PC board or components.

NOTE
There are airflow holes in the top and bottom of the enclosure. To ensure adequate convectional airflow, the drive must be mounted in the orientation shown in the drawing.
1.6 Grounding and Powering the System

WARNING The chassis must be connected to earth ground. Failure to properly ground the chassis leaves the potential for severe electrical hazard and/or problems with normal operation.

The Networked Driver must be grounded for proper operation. The GND connection on the power connector is connected to the enclosure of the Networked Driver and is a sufficient grounding point for most applications. When mounting the Networked Driver on a surface that is electrically conductive and grounded, you should take steps to ensure that the two are electrically bonded together. If necessary, remove paint from the surfaces of the panel that contact the mounting bolts to ensure adequate electrical bonding.

AC power connections are made to the Networked Driver using the power connector kit that ships with the driver. This kit includes the power connector and rubber boot. Figure T1.3 below shows how to properly wire and ground the driver.

For clarity, the rubber boot is not shown in the figure. When installing the power cable, slide the rubber boot onto the cable before wiring the connector. When you’re sure the wiring is correct, slide the boot over the connector to cover the screw heads.

![Figure T1.3 Power and Grounding Connections](image-url)

1. Input power must be 95 to 132 Vac, 50/60 Hz for the SD17060P and 95 to 264 Vac, 50/60 Hz for the SD31045P. Input power must able to supply 800VA for proper operation.
2. Never attempt to power an SD17060P with 230Vac. Doing so will damage the driver and void its warranty.

Both the Neutral and the Line power connections are internally fused in the AMCI Networked Drivers. These fuses are not field replaceable, so external fuses or circuit breakers should also be used. They must be rated for at least 10 amps.
1.7 Installing the Stepper Motor

1.7.1 Outline Drawings
Outline drawings for all of our motors can be found on our website, www.amci.com, in the PDF Documents section. They're available as Adobe Acrobat pdf files. A document that is simply called wiring lists all of the wiring color codes for all AMCI motors. If you do not have internet access contact AMCI and we will fax the information to you.

1.7.2 Mounting the Motor
All AMCI motor have flanges on the front of the motor for mounting. This flange also acts as a heatsink, so motors should be mounted on a large, unpainted metal surface. Mounting a motor in this fashion will allow a significant amount of heat to be dissipated away from the motor, which will increase the motor’s life by reducing its operating temperature. If you cannot mount the motor on a large metal surface, you may need to install a fan to force cooling air over the motor.

Motors should be mounted using the heaviest hardware possible. AMCI motors can produce high torques and accelerations that may weaken and shear inadequate mounting hardware.

1.7.3 Connecting the Load
Care must be exercised when connecting your load to the stepper motor. Even small shaft misalignments can cause large loading effects on the bearings of the motor and load. The use of a flexible coupler is strongly recommended whenever possible.

1.7.4 Extending the Motor Cable
Even though it is possible to extend the cable length an additional forty feet, AMCI recommends installing the Networked Driver as close to the motor as possible. This will decrease the chances of forming a ground loop, and has the added benefit of limiting the amount of power loss in the motor cable. If you must extend the cable, you should use a cable with twisted pairs 18 AWG or larger and an overall shield. Belden 9554 (eight wire), 9553 (six wire) and 9552 (four wire) meet these specifications for 18 AWG+. For long runs, consider using 14 AWG wire. Belden 1070A (eight wire), 1527A (six wire) and 1069A (four wire) meet these specifications for 14 AWG.

1.7.5 Installing the Motor Cable

1) The motor case must be grounded for proper operation. This is usually accomplished through its mounting hardware. If you suspect a problem with your installation, such as mounting the motor to a painted surface, then run a bonding wire from the motor to a solid earth ground point near it. Use a minimum #8 gauge stranded wire or 1/2” wire braid as the grounding wire

2) Do not disassemble any stepper motor. A significant reduction in motor performance will result.

1) All of the motor connections are high power, high voltage signals. Cable from the motor can be installed in conduit along with ac/dc power lines or high power ac/dc I/O. It cannot be installed in conduit with low power cabling such as I/O cabling or Ethernet cabling attached to the Networked Driver.

2) If you decide to extend the motor cable, treat the shield as a signal carrying conductor when installing the motor cable. Do not connect the shield to earth ground at any junction box.
1.8 Connecting the Motor

1.8.1 Motor Connector

The motor connector is shown in figure T1.4. The two Interlock terminals are a safety feature. When these two terminals are not connected, the driver will not power the motor outputs, the Status LED turns on red, and it activates the Fault Output. For normal operation, these two terminals must be connected together with a short wire.

The two center tap pins, A CTAP and B CATP, are there for wiring convenience only. They are electrically isolated from the rest of the driver and are not used to power the motor. The EARTH GND pin is for the shields of the motor cable. This pin is directly connected to the GND pin of the power connector on the Networked Driver.

When powered, the motor connector represents a shock hazard because it has 170/310 Vdc present on its terminals. A rubber boot that is included with the connector must be installed but is not shown in the following figures for clarity. When installing the motor cable, slide the rubber boot onto the cable before wiring the connector. When you’re sure the wiring is correct, slide the boot over the connector to cover the screw heads.

Always remove power from the Networked Driver before connecting or disconnecting the motor.

1) Never connect the motor leads to ground or to a power supply.
2) Always connect the cable shield to the Earth Ground terminal of the Motor Connector on the Networked Driver.

1.8.2 Interlock Wiring

The motor interlock is designed to prevent 170/310 Vdc power from being supplied to the motor connector unless its mate is installed. As shown in figure T1.4 above, a short wire has to be installed between the two outer pins of the mating connector or the motor will not receive power when it is plugged into the Networked Driver.

It is possible to use the Interlock terminals as an alternative way of disabling motor current. This is accomplished by wiring the two pins through a mechanical contact. The wires to the Interlock pins should be kept as short as possible, which means using a mechanical relay in the cabinet that houses the Networked Driver if you need to control the Interlock from a source outside the cabinet. Only mechanical relays should be used. The voltage between the two interlock pins will never exceed 5 Vdc, but 115/230 Vac may be present between either of the two interlock pins and either of the power supply pins.

When the Networked Driver detects a break in the Interlock wiring, it will issue a Driver Fault error. This error is latched and can only be cleared after the interlock connection is re-established. The fault can be cleared over the network by following the procedure outlined in Notes on Clearing a Driver Fault which starts on page 74 or by cycling power to the driver.
1.8 Connecting the Motor (continued)

1.8.3 Motor Wiring

A Networked Driver will work with many different motors, including those not sold by AMCI. This section assumes that you have already chosen your motor and you are looking for wiring information. No wire colors are given in the figures below because there is no single industry-wide color-coding scheme for stepper motors. You must refer to your motor data sheets for this information.

A wiring document for all of the motors ever sold by AMCI is available on our website. This single document contains all of the information necessary to connect any AMCI motor to any AMCI driver. At the time of this manual revision, the wiring manual can be found in the PDF Documents section of the website. It is under the Stepper Motor heading, and link is simply called “wiring”.

Figure T1.5 shows how to wire a motor to a Networked Driver in series, parallel, or center-tap configurations.

Eight Lead Series Connected

Eight Lead Parallel Connected

Six Lead Series Connected

Six Lead Center Tap Connected

Four Lead Connected

1) Refer to the torque vs speed curves on your motor’s specifications sheet to determine if you should wire the motor to the Networked Driver in series, parallel, or center-tap configurations.

2) Motor connections should be tight. Loose connections may lead to arcing which will heat the connector. Phoenix Contact specifies a tightening torque of 4.4 to 5.4 lb-in (0.5 to 0.6 Nm).
1.9 I/O Wiring

1.9.1 Input Wiring

Figure T1.6 below shows how to wire discrete DC differential, sourcing, and sinking sensors to Inputs 1, 2, and 3 of the Networked Driver. Encoders typically have differential outputs, but must be wired to the driver in a specific way. More information on wiring an encoder is given later in this chapter.

Input Specifications:
Differential. 1500 Vac/dc opto-isolated. Can be wired as single ended inputs. Accepts 3.5 to 27Vdc without the need for an external current limiting resistor.

Because they are low power signals, cabling from the sensor to the Networked Driver should be done using a twisted pair cable with an overall shield. The shield should be grounded at the end when the signal is generated, which is the sensor end. If this is not practical, the shield should be grounded to the same ground bus as the Networked Driver.

![Figure T1.6 Input Wiring](image-url)

Figure T1.7 Simplified Input Schematic

- **DC Differential Sensor**:
 - **Grounding Strap**: maybe required by local safety codes.

- **DC Sourcing Sensor**:
 - **Grounding Strap**: maybe required by local safety codes.

- **DC Sinking Sensor**:
 - **Grounding Strap**: maybe required by local safety codes.

ADVANCED MICRO CONTROLS INC.
1.9 I/O Wiring (continued)

1.9.2 Output Wiring

The output on the Networked Driver is an optically isolated transistor that is capable of driving a typical PLC input. Both ends are uncommitted, so it can be wired as a sinking or sourcing output.

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdc max.</td>
<td>30Vdc</td>
</tr>
<tr>
<td>VCE Sat</td>
<td>1Vdc @ 20 mA</td>
</tr>
<tr>
<td>Ic max.</td>
<td>20 mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>20 mW max.</td>
</tr>
</tbody>
</table>

RLIMIT

A resistor may be needed to limit the current through the output. The value, and power rating of the resistor is dependent on the value of Vdc, the voltage drop across the input, and the current requirements of the input.

1.9.3 Encoder Wiring

The figure below shows how to wire a 5Vdc differential encoder to a Networked Driver.

- The ±A channel must be wired to Input 1 for proper operation
- The ±B channel must be wired to Input 2 for proper operation
- The ±Z channel is optional. If used, it must be wired to Input 3. The Z channel is only used when homing the Networked Driver.

Figure T1.9 Sample Encoder Wiring
1.10 PROFIBUS Connections

The PROFIBUS interface can be found on the top of the SD17060P and SD31045P drivers.

1.10.1 Mini USB Connector

The mini USB connector is used to attach the PROFIBUS Driver to your PC. Once attached, the AMCI Net Configurator software utility can be used to test the driver. Additional information on Using the Net Configurator Utility can be found starting on page 97.

1.10.2 PROFIBUS Network Addressing

The node address of the SD17060P or SD31045P on the PROFIBUS network is set with two rotary switches. The address can be set to any value between 02 and 99. The X10 switch, which is closer to the front of the unit, sets the first digit of the address, and the X1 switch sets the second digit. As shown in figure T1.10, each rotary knob has a slot for a small flat head screwdriver and part of the shaft is cut away to indicate the number selected by the switch. The figure shows a PROFIBUS network address of 48. Note that every device on the PROFIBUS network must have a different address.

![Figure T1.10 PROFIBUS Port Location](image)

NOTE
The PROFIBUS address is set exclusively by the rotary switches. Any change in address sent by a PROFIBUS Master will be ignored.

1.10.3 PROFIBUS-DP Port

The PROFIBUS-DP port is a standard female, nine pin, D-sub connector. It can be used with widely available connectors and cordsets. BUS_VDC and BUS_GND connections are available for termination resistors.

Table T1.1 lists the pins available on the PROFIBUS-DP port. Note that the BUS_VDC and BUS_GND connections should only be used for termination resistors.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Connected</td>
</tr>
<tr>
<td>2</td>
<td>Not Connected</td>
</tr>
<tr>
<td>3</td>
<td>RxD/TxD-P Data line+ (B-line) {Red Conductor typically}</td>
</tr>
<tr>
<td>4</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5</td>
<td>BUS_GND (Data Ground for termination resistors that is electrically isolated from the rest of the Networked Driver.)</td>
</tr>
<tr>
<td>6</td>
<td>BUS_VDC (+ 5Vdc for termination resistors. This voltage is electrically isolated from the rest of the driver.)</td>
</tr>
<tr>
<td>7</td>
<td>Not Connected</td>
</tr>
<tr>
<td>8</td>
<td>RxD/TxD-N Data line– (A-line) {Green Conductor typically}</td>
</tr>
<tr>
<td>9</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>

Table T1.1 PROFIBUS-DP Port Pinout
1.10 PROFIBUS Connections (continued)

1.10.4 PROFIBUS Cabling

There are many suppliers of PROFIBUS connectors and cables, including pre-assembled and tested cordsets. is the most common way to wire a PROFIBUS system. A small sampling of companies is given below.

- Turck Inc.: http://www.turck.com or http://www.turck-usa.com
- Phoenix Contact: http://www.phoenixcontact.com
- Lumberg Automation: http://www.lumberg-automationusa.com
- Belden Inc. http://www.belden.com (Belden part # 3079A or 3079E are suggested)

1.10.5 PROFIBUS Status LED

The PROFIBUS status LED is a bi-color (red/green) LED that indicate the health of the network connection between the PROFIBUS Driver and its host. It is located to the right of the PROFIBUS-DP port. The LED itself is hidden from view, but it is easily visible when flashing or on. Table T1.2 lists the meaning of the various blink codes.

<table>
<thead>
<tr>
<th>PROFIBUS Status LED State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Power</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>Communications over USB port.</td>
</tr>
<tr>
<td>On Green</td>
<td>Normal Operation / Data Exchange Mode</td>
</tr>
<tr>
<td>On Red</td>
<td>1) The driver has not received data for an extended period of time. Possible bus line interruption.</td>
</tr>
<tr>
<td>Flashing Red (1 second, 1 Hz)</td>
<td>Parameter or Configuration Error. Invalid data or incorrect data length was received by the PROFIBUS Driver.</td>
</tr>
<tr>
<td>Flashing Red (3 seconds, 1/3 Hz)</td>
<td>1) Incorrect module address selected with rotary switches. Valid range of 02 to 99. 2) Fatal Internal Error. Cycle power to the driver. If the error persists, unit must be returned to AMCI for repairs.</td>
</tr>
</tbody>
</table>

Table T1.2 PROFIBUS Status LED
Notes
This chapter outlines the steps commonly needed to get an SD17060P or SD31045P communicating with the Profibus master. A Siemens SIMATIC S7-317 controller is used as an example.

Basic Steps
Configuring a PROFIBUS host requires a few basic steps.

1) Set the PROFIBUS address switches.
2) Download the ZIP archive that contains the GSD files for the SD17060P/SD31045P from the www.amci.com website.
3) Install the GSD file into the configuration software for your host controller.
4) Add the SD17060P/SD31045P to the PROFIBUS Network.
5) Set the I/O word addresses used to communicate with the SD17060P/SD31045P.

2.1 Set the Address Switches

PREREQUISITE: A small flat head screwdriver to adjust the switches.

2.1.0 PROFIBUS Network Addressing
The node address of the SD17060P or SD31045P on the PROFIBUS network is set with two rotary switches. The address can be set to any value between 02 and 99. The X10 switch, which is closer to the front of the unit, sets the first digit of the address, and the X1 switch sets the second digit. As shown in figure T1.10, each rotary knob has a slot for a small flat head screwdriver and part of the shaft is cut away to indicate the number selected by the switch. The figure shows a PROFIBUS network address of 48. Note that every device on the PROFIBUS network must have a different address.

NOTE The PROFIBUS address is set exclusively by the rotary switches. Any change in address sent by a PROFIBUS Master will be ignored.

SD17060P TOP VIEW

Figure T1.1 PROFIBUS-DP Interface Location

The mini USB connector is used to connect the Networked Driver to the Net Configurator utility from AMCI. This utility allows you to read and write configuration data as well as write move commands to the driver without a PROFIBUS master. Additional information on Using the Net Configurator Utility can be found starting on page 97.

2.2 Download the GSD file
The GSD files are available on the AMCI website on the http://www.amci.com/industrial-automation-support/configuration-files/ web page. The file is a ZIP archive that has to be extracted to a folder on your computer. Extracting the ZIP file will leave you with four files. Two are GSD files and two are icon files.
2.3 GSD File Installation

1) With the SIMATIC manager software started and the correct project open, click on the SIMATIC 300 station icon in the project tree. Double click on the Hardware icon to open the HW Configuration editor.

2) Select Options -> Install GSD File... from the file menu. The “Install GSD Files” window will open.

3) Click on the [Browse] button and navigate to the folder that contains the extracted GSD files you downloaded from the AMCI website. Once at the folder, click on the [OK] button.

4) Select the SD17060P.gsd and SD31045P.gsd entries in the file list and click on the [Install] button. In the resulting window, click on the [Yes] button to confirm the installation of the GSD files.

5) Click the [Close] button to close the Install GSD File window.

2.4 Configure the PROFIBUS Network

1) If the HW Configuration editor is not open, click on the SIMATIC 300 station icon in the project tree and then double click on the Hardware icon to open the HW Configuration editor.

2) If the Hardware Catalog tree is not available on the right side of the HW Configuration Editor window, press [CTRL+K] to open it.

3) If not already present, install the processor in the mounting rail by first navigating to the appropriate PLC folder the Hardware Catalog and then dragging the proper icon to slot 2 of the rail. In this example, the folder is: SIMATIC 300 -> CPU-300 -> CPU 317-2PN/DP -> 6ES7-317-2EJ10-0AB0 and the proper icon is V2.3.

4) If the PROFIBUS network is not already configured, you must configure the network parameters, including the PLC’s address, Transmission Rate, and Profile. In this example:
 a) Double click on the MPI/DI device of the processor. This will open the “Properties-MPI/DP” window.
 b) Set the name of the network.
 c) Under Interface, click on the Type drop down menu and select “PROFIBUS”. This will open the “Properties - PROFIBUS Interface MPI/DP” window.
2.4 Configure the PROFIBUS Network (continued)

d) Set the PROFIBUS address of the PLC. (Default of 2)

e) Click on the [New] button to open the “Properties - New subnet PROFIBUS” window. Use the {General} tab to set the name of the subnet and the {Network Settings} tab to set the bus speed and type. The Type must be set to “DP” in order to communicate with the SD17060P or SD31045P.

5) Click [OK] to close two open windows in order to get back to the “Properties-MPI/DP” window. Click on the {Operating Mode} tab and confirm that DP Master is selected.

6) Close the “Properties-MPI/DP” window by clicking on the [OK] button to get back to HW Configuration Editor screen. You will now see the PROFIBUS network line on the screen.
2.5 Add the SD17060P/SD31045P to the PROFIBUS Network

1) If the Hardware Catalog tree is not available on the right side of the HW Configuration Editor window, press [CTRL+K] to open it.

2) Browse to the SD17060P and SD31045P icons by clicking through PROFIBUS DP +> Additional Field Devices +> Drives +> AMCI_Products. Drag and drop the appropriate icon onto the PROFIBUS network line.

3) In the “Properties - PROFIBUS interface [Networked Driver Part Number] Profibus-DP” window that opened when you dropped the icon onto the network line, use the {Parameters} tab to set the network address of the Networked Driver. This address must be the same one you set with the rotary switches on the top of the driver. If you have created more than one subnet, select the proper subnet in this tab as well. Use the {General} tab to set the name of the SD17060P or SD31045P in your project. Click the [OK] button to close the Properties window.

4) With the icon selected, detailed information on the device is available in the detailed view section of the window, which is below the graphic view of your setup. The default PI (Peripheral Input) and PQ (Peripheral Output) memory locations that were assigned when the SD17060P or SD31045P was added are shown in this view. If you want to change these addresses, double click anywhere in the detail view row to open the “Properties - DP slave” window. From here you can set the starting addresses for the SD17060P or SD31045P. The ending addresses will automatically update. Click the [OK] button to confirm your selection.

Continue by adding any remaining devices to your PROFIBUS network. Remember to compile and download the changes to your PLC.
Using the Net Configurator Utility

USB Connection

The SD17060P and SD31045P have a mini USB connector near the PROFIBUS-DP connector. When connected to a computer, this USB connection acts as a serial port and allows you to connect to the driver without the need for a PROFIBUS port on your PC. You may be required to install a windows driver when you use the USB connection for the first time. The driver is included in the Net Configurator utility zip file.

NOTE

A USB cable is not included with the Networked Driver.

A.1 Download the AMCI Net Configurator Utility

The AMCI Net Configurator utility is available on our website, www.amci.com. It can be found by going to the http://www.amci.com/industrial-automation-support/software/ page and selecting the configuration utility "for all networked products". The program exists as a ZIP file.

A.2 Install the AMCI Net Configurator Utility

Once downloaded, simply extract the program from the ZIP file and run the program to install the AMCI Net Configurator utility on your computer. The utility installs as most products do, giving you the option to change the file locations before installing the utility. Once the install is complete, a link to the utility is available on the Start Menu.

The install process only copies the utility to the designated location and creates links to the Start Menu. No changes are made to your registry settings.

A.3 USB Driver Installation

Once you have installed the AMCI Net Configurator software, apply power to your SD17060P or SD31045P and plug in your USB cable between the module and your computer.

At this point, your system may notify you that an unknown device has been plugged into the computer and the system will start to look for the required driver. AMCI uses a popular USB to serial chipset so the required drivers may already exist on your computer. If the drivers are on your system, they will install automatically. If the “Found New Hardware Wizard” opens on your system, and it asks “Can Windows connect to Windows Update to search for software?” you can click on the radio button that selects “Yes, this time only” and click on the [Next >] button. Your system should be able to locate the required driver.

Alternately, you can click on the “No, not at this time” radio button and click the [Next >] button. On the next screen, select the “Install from a list or specific location” radio button and click the [Next >] button. Now select the “Search for the best driver in these locations” radio button, un-check the “Search removable media” check box, check the “Include this location in the search” check box, and click on the [Browse] button. Browse to the folder that was created when you installed the program, typically `\Program Files\AMCI` on XP systems or `\Program Files (x86)\AMCI` on Windows 7+ systems, and click the [OK] button. Click the [Next >] button, and your system should install the required driver.

The process may repeat to install a USB serial port.
A.4 Start the AMCI Net Configurator Utility

NOTE The PROFIBUS-DP connector must be removed from the Networked Driver before using the AMCI Net Configurator utility over the USB connection.

To start the program, click on the desktop icon or navigate from the start button to the program listing and click on the icon there. The program will present a screen similar to figure A.2 below.

![AMCI Net Configurator Software](image)

Figure A.2 AMCI Net Configurator Software

A.5 Connect to the SD17060P or SD31045P

1) Click on the *USB Port* radio button to select it.
2) Click on the [Connect] button. The Net Configurator utility will begin to communicate with your Networked Driver.
3) Once connected, the Device Identity group will show the product name and firmware revision.

![PROFIBUS Module Device Properties](image)

Figure A.3 PROFIBUS Module Device Properties
A.6 Controlling the SD17060P or SD31045P

1) Once connected, a second tab appears with the product number of your device on it. Click this tab.
2) The resulting screen allows you to configure the device and issue commands to your driver. In the Configuration group, there is a “Save to Flash” radio button group that allows you to save the configuration to flash memory. If this is done, the driver will use this stored configuration on power up and will be able to accept commands immediately. However, consider having your host controller write the configuration to your driver on every power up. This will allow you to easily replace the driver if the need ever arises.

Figure A.4 Configuration and Command Screen
The equations in this appendix use a unit of measure of steps/second/second (steps/second2) for acceleration and deceleration. However, when programming the SD17060P or SD31045P, all acceleration and deceleration values must be programmed in the unit of measure of steps/second/millisecond.

- To convert from steps/second2 to steps/second/millisecond, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into the Networked Driver.
- To convert from steps/second/millisecond to steps/second2, multiply the value by 1000. This must be done when converting from the value programmed into the Networked Driver to the value used in the equations.

Constant Acceleration Equations

When you choose to use constant accelerations, the speed of the move will increase linearly towards the Programmed Speed. This is the fastest form of acceleration, resulting in the fastest move between two points at its programmed speed. For the smoothest transition from the starting speed, the starting speed should be equal to the square root of the acceleration in steps/sec2. For example, if the choose acceleration is 20,000 steps/sec2, the smoothest transition occurs when the starting speed is 141. ($141^2 \approx 20,000$)

,Variable Definitions

The following variables are used in these equations:

- V_S = Configured Starting Speed of the move
- V_P = Programmed Speed of the move
- a = Acceleration value. Must be in the units of steps/second2
- d = Deceleration value. Must be in the units of steps/second2
- T_A or T_D = Time needed to complete the acceleration or deceleration phase of the move
- D_A or D_D = Number of Steps needed to complete the acceleration or deceleration phase of the move
Constant Acceleration Equations (continued)

Figure R9.1 gives the equations to calculate Time, Distance, and Acceleration values for a constant acceleration move.

<table>
<thead>
<tr>
<th>Acceleration Type</th>
<th>T_A or T_D (Time to Accelerate or Decelerate)</th>
<th>D_A or D_D (Distance to Accelerate or Decelerate)</th>
<th>a (Average Acceleration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$T_A = (V_P - V_S)/a$</td>
<td>$D_A = T_A*(V_P + V_S)/2$</td>
<td>$a = (V_P^2 - V_S^2)/2D_A$</td>
</tr>
</tbody>
</table>

Table R9.1 Acceleration Equations

If the sum of the D_A and D_D values of the move is less than the total number of steps in the move, your move will have a Trapezoidal profile.

If the sum of the D_A and D_D values of the move is equal to the total number of steps in the move, your move will have a Triangular profile and your move will reach the Programmed Speed before it begins to decelerate.

If the sum of the D_A and D_D values of the move is greater than the total number of steps in the move, your move will have a Triangular profile and it will not reach the Programmed Speed before it begins to decelerate.

As an example, let’s assume the values in table R9.2 for a move profile.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (a)</td>
<td>20,000 steps/sec2</td>
</tr>
<tr>
<td>Deceleration (d)</td>
<td>25,000 steps/sec2</td>
</tr>
<tr>
<td>Starting Speed (V_S)</td>
<td>141 steps/sec</td>
</tr>
<tr>
<td>Programmed Speed (V_P)</td>
<td>100,000 steps/sec</td>
</tr>
</tbody>
</table>

Table R9.2 Sample Values

From figure R9.1:

- Time to accelerate: $T_A = (V_P - V_S)/a = (100,000 - 141)/20,000 = 4.993$ seconds
- Time to decelerate: $T_D = (V_P - V_S)/d = (100,000 - 141)/25,000 = 3.994$ seconds
- Distance to Accelerate: $D_A = T_A*(V_P + V_S)/2 = 4.993 * (100,000 + 141)/2 = 250,002$ steps
- Distance to Decelerate: $D_D = T_D*(V_P + V_S)/2 = 3.994 * (100,000 + 141)/2 = 199,982$ steps
- Total Distance needed to accelerate and decelerate: $250,002 + 199,982 = 449,984$ steps

If a move with the above acceleration, deceleration, starting speed, and programmed speed has a length greater than 449,984 steps, the Networked Driver will generate a Trapezoidal profile. If the move is equal to 449,984 steps, the Networked Driver will generate a Triangular profile and the Networked Driver will output one pulse at the programmed speed. If the move is less than 449,984 steps, the Networked Driver will generate a Triangular profile and the programmed speed will not be reached.

In the case of a Triangular profile where the programmed speed is not reached, it is fairly easy to calculate the maximum speed (V_M) attained during the move. Because the move is always accelerating or decelerating, the total distance traveled is equal to the sum of D_A and D_D.

\[D_A = T_A*(V_M + V_S)/2 \quad \text{and} \quad T_A = (V_M - V_S)/a. \]

By substitution:

\[D_A = (V_M - V_S)/a \times (V_M + V_S)/2 = (V_M^2 - V_S^2)/2a. \]

By the same method,

\[D_D = (V_M^2 - V_S^2)/2d. \]

Therefore, total distance traveled =

\[D_A + D_D = (V_M^2 - V_S^2)/2a + (V_M^2 - V_S^2)/2d. \]

In the case where the acceleration and deceleration values are equal, this formula reduces to:

\[D_A + D_D = (V_M^2 - V_S^2)/a. \]
Constant Acceleration Equations (continued)

Continuing the example from table R9.2, assume a total travel distance of 300,000 steps.

\[
D_A + D_D = \frac{V^2_M - V^2_S}{2a} + \frac{V^2_M - V^2_S}{2d}
\]

For 300,000 steps,

\[
\frac{V^2_M - 141^2}{2(20,000)} + \frac{V^2_M - 141^2}{2(25,000)}
\]

For 300,000 steps,

\[
\frac{V^2_M - 20,000}{40,000} + \frac{V^2_M - 20,000}{50,000}
\]

For 300,000 steps,

\[
\frac{5(V^2_M - 20,000)}{4(40,000)} + \frac{4(V^2_M - 20,000)}{50,000}
\]

For 300,000 steps (200,000),

\[
9V^2_M - 180,000
\]

\[
\frac{60,000.18 \times 10^6}{9} = V^2_M
\]

\[
V_M = 81,650 \text{ steps/sec}
\]

Once you have calculated the maximum speed, you can substitute this value into the time and distance formulas in table R9.1 on page 102 to calculate time spent and distance traveled while accelerating and decelerating.

Total Time Equations

For Trapezoidal Profiles you must first determine the number of counts that you are running at the Programmed Speed. This value, \(D_P\) below, is equal to your \(D_A\) and \(D_D\) values subtracted from your total travel. You can then calculate your total profile time, \(T_T\) below, from the second equation.

\[
D_P = \text{(Total Number of Steps)} - (D_A + D_D)
\]

\[
T_T = T_A + T_D + \frac{D_P}{V_P}
\]

For Triangular Profiles, the total time of travel is simply:

\[
T_T = T_A + T_D
\]
S-Curve Acceleration Equations

When the Acceleration Jerk parameter value is in the range of 1 to 5,000, the Networked Driver uses this value to smoothly change the acceleration value applied during the move. In this case, the speed of the move does not increase linearly, but exponentially, resulting in an “S” shaped curve. This limits mechanical shocks to the system as the load accelerates. Just as constant acceleration will result in a trapezoidal or triangular speed profile, the Acceleration Jerk parameter will result in a trapezoidal or triangular acceleration phase.

In order to keep the Acceleration Jerk parameter value that is programmed into the Networked Driver below sixteen bits, the Acceleration Jerk parameter programmed into the driver does not have units of steps/sec^3. The Acceleration Jerk parameter equals \(\frac{100 \times \text{jerq in steps/sec}^3}{\text{acceleration in steps/sec}^2} \). This translates to the jerk property in \(\text{steps/sec}^3 \) equalling \(\left(\frac{\text{Acceleration Jerk parameter}}{100} \right) \times \text{acceleration in steps/sec}^2 \). With the range of values for the Acceleration Jerk parameter being 1 to 5,000, the jerk value ranges from 0.01 to 50 where “a” is the acceleration value in steps/sec^2. For example, if the acceleration is programmed to 20,000 steps/sec^2, then the value of the jerk property used by the module can be programmed to be between 200 steps/sec^3 (0.01*20,000) and 1,000,000 steps/sec^3 (50*20,000). This statement applies to the Deceleration Parameter as well. If the Acceleration and Deceleration parameters are different, the calculate jerk values will also differ.

When using variable accelerations, the starting speed does not have to be equal to the square root of the programmed acceleration value. Variable acceleration provides smooth transitions at the beginning and end of the acceleration phase.

Triangular S-Curve Acceleration

Figure R9.2 shows the speed profile of a move during its acceleration phase. The figure shows the desired triangular S-curve acceleration in red along with the equivalent constant acceleration in blue. The equivalent constant acceleration is equal to the change in speed divided by the time it takes to achieve this change in speed. This is the value that would have to be used if the Jerk parameter was left at zero and we will use this information to calculate the S-curve acceleration and the value of the Jerk Parameter.

\[
s = \text{Programmed Speed} - \text{Starting Speed}
\]

\[
\text{Acceleration} = \frac{\text{speed}}{\text{time}}
\]

\[
\text{Jerk} = \frac{\text{acceleration}}{\text{time}}
\]

\[
\text{ANG1's Acceleration} \text{ Jerk Parameter(J)} = \frac{100j}{a}
\]

\[
j = \frac{Ja}{100}
\]

Figure R9.2 Move Profile Example

Speed is equal to acceleration multiplied by the time it is applied. This is shown graphically in figure R9.3 as the area of the blue rectangle. In order for the Triangular S-curve acceleration to reach the same speed in the same amount of time, the area of the triangle must equal the area of the square. Area of a triangle is one half of the base length multiplied by the height. Therefore:

\[
\frac{a_c t}{2}
\]

Area of rectangle = Area of triangle

\[
\frac{a_c t}{2} = a_s
\]

This means that a triangular S-curve acceleration profile requires twice the programmed maximum acceleration as a constant acceleration profile to achieve the same speed in the same amount of time.
S-Curve Acceleration Equations (continued)

Triangular S-Curve Acceleration (continued)

The value of the Acceleration Jerk parameter can now be easily calculated.

\[j = \frac{a_s}{t/2} \quad (j = a/t) \]

\[j = \frac{2a_s}{t} \]

\[\frac{Ja_s}{100} = \frac{2a_s}{t} \quad \left(j = \frac{Ja}{100} \right) \]

\[Ja_s t = 200a_s \]

\[J = \frac{200}{t} \quad \text{Acceleration Jerk parameter} = \frac{200}{\text{acceleration time}} \]

This value represents the ideal Acceleration Jerk parameter value for a triangular S-curve acceleration. Setting the value lower than this will result in a longer acceleration period, while setting the value above this will result in a trapezoidal S-curve acceleration.

When \(a_s = a_c \)

The above examples assume that you can increase the programmed acceleration value to keep the acceleration time the same. If your constant acceleration value is the maximum your system will allow, then using S-curve accelerations will lengthen the time needed to accelerate to your desired speed.

In the case of Triangular S-curve accelerations where the Acceleration Jerk parameter is optimized at 200/t, the value of “t” must be twice that of the acceleration period when constant acceleration is used. For example, assume a equivalent constant acceleration of 20,000 steps/sec\(^2\) that is applied for 2.0 seconds. If the acceleration value must remain at 20,000 steps/sec\(^2\), then the acceleration phase will take 4.0 seconds and the Acceleration Jerk parameter should be set to 50 (200/4.0)
S-Curve Acceleration Equations (continued)

Trapezoidal S-Curve Acceleration

Figure R9.4 shows the speed profile of a move during its acceleration phase. The figure shows the desired trapezoidal S-curve acceleration in red along with the equivalent constant acceleration in blue. The equivalent constant acceleration is equal to the change in speed divided by the time it takes to achieve the change in speed. This is the value that would have to be used if the Acceleration Jerk parameter was left at zero and we will use this information to calculate the S-curve acceleration and the value of the Acceleration Jerk Parameter.

![Figure R9.4 Move Profile Example](image)

In this example, the period of constant acceleration is 50% of the acceleration phase.

Trapezoidal S-Curve Deceleration

Speed is equal to acceleration multiplied by the time it is applied. This is shown graphically in figure R9.5 as the area of the blue rectangle. In order for the Trapezoidal S-curve acceleration to reach the same speed in the same amount of time, the area of the polygon must equal the area of the rectangle.

![Figure R9.5 Trapezoidal Acceleration](image)

This means that a trapezoidal S-curve acceleration profile that has a period of constant acceleration equal to half of the total phase time, requires its programmed acceleration value to be 4/3 that of the constant acceleration value used to achieve the same speed in the same amount of time.
S-Curve Acceleration Equations (continued)

Trapezoidal S-Curve Acceleration (continued)

The value of the Acceleration Jerk parameter can now be easily calculated.

\[
\begin{align*}
j &= \frac{a_s}{t/4} \quad (j = a/t) \\
\frac{Ja_s}{100} &= \frac{4a_s}{t} \quad \left(j = \frac{Ja}{100} \right) \\
Ja_s &= 400a_s \\
J &= \frac{400}{t}
\end{align*}
\]

Acceleration Jerk Parameter = \(\frac{400}{\text{acceleration time}} \)

This value represents the ideal Acceleration Jerk parameter value for a trapezoidal S-curve acceleration with a constant acceleration for half of the phase. Setting the value lower than this will result in a shorter constant period, while setting the value greater than this will result in a longer constant period.

Another example of a trapezoidal S-curve acceleration is when the linear acceleration occurs for one third of the time. In this case, the programmed acceleration must be the constant acceleration value multiplied by \(\frac{3}{2} \) and the Acceleration Jerk parameter must be set to \(300/t \).

When \(a_s = a_c \)

The above examples assume that you can increase the programmed acceleration value to keep the time of the acceleration phase the same. If your constant acceleration value is the maximum your system will allow, then using S-curve accelerations will lengthen the time needed to accelerate to your desired speed.

In the case of trapezoidal S-curve accelerations, calculating the percentage increase in time is shown in figure R9.6. The time added to the acceleration phase is equal to the time spent increasing the acceleration during the phase. As shown in the figure, when the Trapezoidal S-curve is programmed to spend 50% of its time at the programmed acceleration value, the time spent in the acceleration phase will be 133.33% of the time spent if a constant acceleration were used.

\[
\begin{align*}
T_{\text{const}} &= \frac{0.25n + 0.25t}{t + n} \\
T_{\text{trap}} &= \frac{0.25t}{t/3} = \frac{t}{3} = \frac{n + t}{3} = \frac{4/3t}{t} = 1.333t
\end{align*}
\]

Figure R9.6 Trapezoidal S-curve Time Increase Example

In this case the value of the Acceleration Jerk parameter should be based on the new, longer time. For example, assume an equivalent constant acceleration of 15,000 steps/sec\(^2\) that is applied for 2.0 seconds. If the acceleration value must remain at 15,000 steps/sec\(^2\), then the acceleration phase will take 2.667 seconds (2.0 \times 1.333) and the Acceleration Jerk parameter should be set to 150 (400/2.667)

Similarly, if the Trapezoidal S-curve acceleration is to spend 33.3% of its time at constant acceleration, and the programmed acceleration value cannot be increased, the time spent accelerating will increase by 50% and the Acceleration Jerk parameter should be adjusted accordingly.
S-Curve Acceleration Equations (continued)

Determining Waveforms by Values

If your programmed acceleration and deceleration values are the same, then your move’s acceleration and
decelerations will be identical. If these two programmed values are different, use the above methods to deter-
dine the Acceleration Jerk parameter for either the move’s acceleration or deceleration phases and use the
following calculations to determine the shape of the other phase.

Two examples are given below. Both assume a change in speed between the Starting Speed and Programmed
Speed of 30,000 steps/sec and an acceleration of 58,000 steps/sec². The first example uses an Acceleration
Jerk parameter value of 20 and the second a value of 400.

Triangular or Trapezoidal S-curve accelerations are always symmetrical. We’ll use this fact to calculate the
profile up to one-half of the change in speed. At that point, doubling the time and distance will yield the total
time and distance traveled.

Example 1, Jerk = 20

\[S_m = \frac{30,000 \text{ steps/sec}}{2} = 15,000 \text{ steps/sec} \]

\[J = \frac{100j}{a} \Rightarrow j = \frac{Ja}{100} \]

\[j = \frac{20(58,000 \text{ steps/sec}^2)}{100} \]

\[j = 11,600 \text{ steps/sec}^3 \]

Just as displacement \(= \frac{1}{2}at^2 \), Speed = \(\frac{1}{2}jt^2 \)

\[15,000 \text{ steps/sec} = \frac{11,600 \text{ steps/sec}^3(t^2)}{2} \]

\[t^2 = \frac{15,000 \text{ steps/sec}}{5,800 \text{ steps/sec}^3} \]

\[t = 1.608 \text{ seconds} \]

Just as speed = at, acceleration = jt

\[a_f = 11,600 \text{ steps/sec}^3(1.608 \text{ sec}) \]

\[a_f = 18,655 \text{ steps/sec}^2 \]

Because \(a_f \) is less than or equal to the programmed acceleration of 58,000 steps/sec², the resulting acceleration
is a Triangular S-curve. Total time to accelerate is twice the value calculated above, or 3.216 seconds.
S-Curve Acceleration Equations (continued)
Determining Waveforms by Values (continued)

Example 2, Jerk = 400

\[S_m = \frac{30,000 \text{ steps/sec}}{2} = 15,000 \text{ steps/sec} \]
\[J = \frac{100j}{a} \Rightarrow j = \frac{Ja}{100} \]
\[j = \frac{400(58,000 \text{ steps/sec}^3)}{100} \]
\[j = 232,000 \text{ steps/sec}^3 \]

Just as displacement \(= \frac{1}{2}at^2 \), speed \(= \frac{1}{2}jt^2 \)

\[15,000 \text{ steps/sec} = \frac{232,000 \text{ steps/sec}^3(t^2)}{2} \]
\[t^2 = \frac{15,000 \text{ steps/sec}}{116,000 \text{ steps/sec}^3} \]
\[t = 0.3596 \text{ seconds} \]

Just as speed = at, acceleration = jt
\[a_f = 232,000 \text{ steps/sec}^3(0.3596 \sec) \]
\[a_f = 83,427 \text{ steps/sec}^2 \]

Because \(a_f \) is greater than the programmed acceleration of 58,000 steps/sec\(^2\), the resulting acceleration is a trapezoidal S-curve. As shown in figure R9.7, two additional calculations must be made. The first is the time \((t_1) \) it takes to jerk to the programmed acceleration value. The second is the time \((t_2) \) it takes to accelerate to half of the required change in speed \((S_m) \).

\[232,000 \text{ steps/sec}^3(t_1) = 58,000 \text{ steps/sec}^2 \] \(jt = a \)
\[t_1 = 0.25 \text{ seconds} \]

Determine speed at \(t_1 \): Speed \(= \frac{1}{2}jt^2 \)
\[S_1 = \frac{232,000 \text{ steps/sec}^3(0.25)^2}{2} \]
\[S_1 = 7,250 \text{ steps/sec} \]

Determine remaining change in speed and required time based on programmed acceleration
\[S_2 = S_m - S_1 = (15,000 - 7,250) \text{ steps/sec} \]
\[S_2 = 7,750 \text{ steps/sec} \]
\[S_2 = a_c(t_2) \Rightarrow t_2 = S_2/a_c \]
\[t_2 = \frac{7,750 \text{ steps/sec}}{58,000 \text{ steps/sec}^2} \]
\[t_2 = 0.1336 \text{ seconds} \]

The time for this acceleration phase is \(2(t_1 + t_2) \), which equals \(2(0.2500 \sec + 0.1336 \sec) \) or 0.7672 seconds. Time spent in the constant acceleration period is \((2(0.1336))/0.7672) \) or 34.8% of the entire phase.
CALCULATING MOVE PROFILES