

3102

Manual #: 940-01011

2 Axis Servo/Stepper Controller Module

GENERAL INFORMATION

Important User Information

The products and application data described in this manual are useful in a wide variety of different applications. Therefore, the user and others responsible for applying these products described herein are responsible for determining the acceptability for each application. While efforts have been made to provide accurate information within this manual, AMCI assumes no responsibility for the application or the completeness of the information contained herein.

UNDER NO CIRCUMSTANCES WILL ADVANCED MICRO CONTROLS, INC. BE RESPONSIBLE OR LIABLE FOR ANY DAMAGES OR LOSSES, INCLUDING INDIRECT OR CONSEQUENTIAL DAM-AGES OR LOSSES, ARISING FROM THE USE OF ANY INFORMATION CONTAINED WITHIN THIS MANUAL, OR THE USE OF ANY PRODUCTS OR SERVICES REFERENCED HEREIN.

No patent liability is assumed by AMCI, with respect to use of information, circuits, equipment, or software described in this manual.

The information contained within this manual is subject to change without notice.

This manual is copyright 2011 by Advanced Micro Controls Inc. You may reproduce this manual, in whole or in part, for your personnal use, provided that this copyright notice is included. You may distribute copies of this complete manual in electronic format provided that they are unaltered from the version posted by Advanced Micro Controls Inc. on our official website: *www.amci.com*. You may incorporate portions of this documents in other literature for your own personal use provided that you include the notice "Portions of this document copyright 2011 by Advanced Micro Controls Inc." You may not alter the contents of this document or charge a fee for reproducing or distributing it.

Standard Warranty

ADVANCED MICRO CONTROLS, INC. warrants that all equipment manufactured by it will be free from defects, under normal use, in materials and workmanship for a period of [18] months. Within this warranty period, AMCI shall, at its option, repair or replace, free of charge, any equipment covered by this warranty which is returned, shipping charges prepaid, within eighteen months from date of invoice, and which upon examination proves to be defective in material or workmanship and not caused by accident, misuse, neglect, alteration, improper installation or improper testing.

The provisions of the "STANDARD WARRANTY" are the sole obligations of AMCI and excludes all other warranties expressed or implied. In no event shall AMCI be liable for incidental or consequential damages or for delay in performance of this warranty.

Returns Policy

All equipment being returned to AMCI for repair or replacement, regardless of warranty status, must have a Return Merchandise Authorization number issued by AMCI. Call (860) 585-1254 with the model number and serial number (if applicable) along with a description of the problem during regular business hours, Monday through Friday, 8AM - 5PM Eastern. An "RMA" number will be issued. Equipment must be shipped to AMCI with transportation charges prepaid. Title and risk of loss or damage remains with the customer until shipment is received by AMCI.

24 Hour Technical Support Number

24 Hour technical support is available on this product. If you have internet access, start at www.amci.com. Product documentation and FAQ's are available on the site that answer most common questions.

If you require additional technical support, call (860) 583-7271. Your call will be answered by the factory during regular business hours, Monday through Friday, 8AM - 5PM Eastern. During non-business hours an automated system will ask you to enter the telephone number you can be reached at. Please remember to include your area code. The system will page an engineer on call. Please have your product model number and a description of the problem ready before you call.

We Want Your Feedback

Manuals at AMCI are constantly evolving entities. Your questions and comments on this manual are both welcomed and necessary if this manual is to be improved. Please direct all comments to: Technical Documentation, AMCI, 20 Gear Drive, Terryville CT 06786, or fax us at (860) 584-1973. You can also e-mail your questions and comments to *techsupport@amci.com*

TABLE OF CONTENTS

General Information

Important User Information	IFC
Standard Warranty	IFC
Returns Policy	IFC
24 Hour Technical Support Number	IFC
We Want Your Feedback	IFC

About This Manual

Audience	5
Navigating this Manual	5
Manual Conventions	5
Trademarks and Other Legal Stuff	6
Revision Record	6
Where To Go From Here	6

Chapter 1: Introduction to the 3102

Module Overview Front Panel LED's	7
Modes of Operation	8
Compatible Equipment	9
Specifications	10

Chapter 2: Move Profiles

Units of Measure	11
Definition of Count Direction	11
Definition of Home Position	11
Definition of Starting Speed	12
Definition of Target Position	12
Definition of Acceleration Types	13
Linear Acceleration 13	
Triangular S-Curve Acceleration 13	
Trapezoidal S-Curve Acceleration 13	
A Simple Move	14
Controlled and Immediate Stops	14 15
Controlled and Immediate Stops Backplane Control 15	14 15
A Simple Move Controlled and Immediate Stops Backplane Control	14 15
A Simple Move Controlled and Immediate Stops Backplane Control	14 15 16
A Simple Move Controlled and Immediate Stops	14 15 16
A Simple Move Controlled and Immediate Stops Backplane Control	14 15 16
A Simple Move Controlled and Immediate Stops Backplane Control	14 15 16 17

Chapter 2: Move Profiles (cont'd)

Absolute Move	17
±Jog Move	18
±Registration Move	19
±Blend Move	20
±Encoder Follower Moves	21

Chapter 3: Homing the 3102

Definition of Home Position	•••••	23
Position Preset		23
±Find Home Commands		23
Homing Inputs		23
Physical Inputs	23	
Backplane Inputs	23	
Homing Configurations		24
Homing Profiles		24
Home Input Only Profile	24	
Profile with Proximity Input	25	
Profile with Overtravel Limit	26	

Chapter 4: Installing the 3102

Location	27
Safe Handling Guidelines	27
Prevent Electrostatic Damage 27	
Prevent Debris From	
Entering the Module 27	
Remove Power Before	
Servicing 27	
Mounting	28
Minimum Spacing 28	
Panel Mounting 28	
DIN Rail Mounting 29	
System Assembly	29
Terminal Block Pinout	30
1746-N3 Connector Kit	30
IM-3R Interface Module	31
General Wiring Guidelines	31
Driver Wiring	32
Differential Wiring 32	
Open Collector Wiring 32	
General Purpose Output Wiring	33
Discrete Input Wiring	34
Encoder Wiring	34
Differential Encoder Wiring 34	
Single Ended Wiring 35	
Diagnostic Feedback Wiring	36

Chapter 5: RSLogix 500 Configuration

Add the 3102 to Your Project	37
Finding the 3102 in Your Project	38
Data Location	38
PLC I/O Errors	39

Chapter 6: Configuration Mode Data Format

Output Data Format		41
Configuration Bits MSW	42	
Configuration Bits LSW	43	
Starting Speed	43	
Homing Timeout	44	
Input Data Format		44
Global Status Bits	•••••	45
Invalid Configurations		45
Configuration Bits MSW	45	
Configuration Bits LSW	46	
Starting Speed Parameter	46	
Homing Timeout Parameter	46	
Reserved Words	46	

Chapter 7: Command Mode Data Format

Multi-Word Parameters	•••••	47
Output Data Format Command Bits MSW Command Bits LSW	48 49	47
Command Bits Must Transition	•••••	49
Command Blocks		49
Absolute Move	49	
Relative Move	50	
Hold Move	50	
Resume Move	51	
Immediate Stop	51	
+Find Home (CW)	52	
-Find Home (CCW)	52	
+Jog Move (CW)	53	
+Registration Move (CW)	53	
+Encoder Follower Move	53	
–Jog Move (CCW)	54	
-Registration Move (CCW)	54	
-Encoder Follower		
Move (CCW)	54	
Preset Position	55	
Preset Encoder Position	551	
Reset Errors	55	

Chapter 7: Command Mode Data Format (cont'd)

Run +Blend Move	
Profile (CW)	56
Run –Blend Move	
Profile (CCW)	56
Set Min. Registration	
Move Distance	56
Programming Blend Move Profiles	57
Initial Profile	
Programming Block	58
Secondary Profile	
Programming Block	59
Input Data Format	59
Status Bits MSW	60
Global Status Bits	61
Status Bits LSW	61
Current Position	62
Encoder Position/Diagnostic	
Feedback Value	62
Capture Data	62

Chapter 8: Tabulated Command & Error Codes

Status Bits	63
Axis Stopped	63
Move Complete Bit	63
Home Invalid Bit	63
Invalid Profile Bit	63
Position Invalid Bit	64
Input Error Bit	64
Command Error Bit	65
Configuration Error Bit	65
Command Error Conditions	
By Command	65
±Jog Move Command	65
±Blend Move Command	66
Registration Move Command	66
Encoder Follower Operations	66

ABOUT THIS MANUAL

Read this chapter to learn how to navigate through this manual and familiarize yourself with the conventions used in it. The last section of this chapter high-lights the manual's remaining chapters and their target audience.

Audience

This manual explains the installation and operation of the 3102 Two Axis Servo/Stepper Controller Module from AMCI for the Rockwell Automation MicroLogix platform. It is written for the engineer responsible for incorporating the 3102 into a design as well as the engineer or technician responsible for its actual installation. If there are any unanswered questions after reading this manual, call the factory. An applications engineer will be available to assist you.

Navigating this Manual

This manual is designed to be used in both printed and on-line forms. Its on-line form is a PDF document, which requires Adobe Acrobat Reader version 6.0+ to open it. Please note that the PDF document was created with version 9 of Adobe Acrobat. When you open this file with Acrobat Reader versions 6 through 8, you may see a warning message stating that the file was created with a later version of Acrobat. This warning can be safely ignored as this file has been tested with these versions of Acrobat Reader.

Bookmarks of all the chapter names, section headings, and sub-headings are in the PDF file to help you navigate through it. The bookmarks should have appeared when you opened the file. If they didn't, press the F5 key on Windows platforms to bring them up.

Throughout this manual you will also find *blue text that functions as a hyperlink* in HTML documents. Clicking on the text will immediately jump you to the referenced section of the manual. If you are reading a printed manual, most links include page numbers.

The PDF file is password protected to prevent changes to the document. You are allowed to select and copy sections for use in other documents and, if you own Adobe Acrobat version 6.0 or later, you are allowed to add notes and annotations.

Manual Conventions

Three icons are used to highlight important information in the manual:

NOTES highlight important concepts, decisions you must make, or the implications of those decisions.

CAUTIONS tell you when equipment may be damaged if the procedure is not followed properly.

WARNINGS tell you when people may be hurt or equipment may be damaged if the procedure is not followed properly.

The following table shows the text formatting conventions:

Format	Description
Normal Font	Font used throughout this manual.
Emphasis Font	Font used the first time a new term is introduced.
Cross Reference	When viewing the PDF version of the manual, clicking on the cross reference text jumps you to referenced section.

Trademarks and Other Legal Stuff

The AMCI logo is a trademark, and "AMCI" is a registered trademark of Advanced Micro Controls Inc. "MicroLogix" is a trademark of Rockwell Automation. "Adobe" and "Acrobat" are registered trademarks of Adobe Systems Incorporated.

All other trademarks contained herein are the property of their respective holders.

Revision Record

This manual, 940-01011, is the second release of this manual. It was released on January 24th, 2010. This revision corrects typographical errors and improves descriptions. There are no new 3102 features introduced with this revision.

Old Revisions

940-01010: Initial Release, December 24, 2009.

Where To Go From Here

This manual contains information that is of interest to everyone from engineers to operators. The table below gives a brief description of each chapter's contents to help you find the information you need to do your job.

CHP Num.	Chapter Title	Chapter Description
1	INTRODUCTION TO THE 3102	Intended for anyone new to the 3102, this chapter gives a basic overview of the unit and lists complementary equipment available from AMCI.
2	MOVE PROFILES	Information on how to define moves with the 3102 and the various move types available with the module.
3	HOMING THE 3102	For some applications, it easier to define moves in terms of actual positions on the machine. Before you can run these moves you must define a home position on the machine. This chapter give detailed informa- tion on how the 3102 can help you define this posi- tion.
4	INSTALLING THE 3102	Information on physically installing the 3102 in you system, including PLC installation and I/O wiring.
5	RSLogix 500 CONFIGURATION	This chapter explains how to add a 3102 to an RSLogix 500 project
6	CONFIGURATION MODE DATA FORMAT	This chapter explains how to configure the 3102 for use in your application.
7	COMMAND MODE DATA FORMAT	This chapter explains the formats of the commands you can issue to the 3102
8	TABULATED COMMAND & ERROR CODES	This chapter lists the bits used by the 3102 to signal error conditions and the reasons why the bits may be set.

CHAPTER 1 INTRODUCTION TO THE 3102

Module Overview

The 3102 is the first servo/stepper controller for the MicroLogix 1100, 1200, and 1400 platforms. The module offers two independent motion control axes that function in an open-loop configuration. Each axis can be used to drive a stepper or a servo with step/ direction input capability.

A second module available from AMCI, the 3102i, can synchronize the two axes, giving you the ability to control linear and circular motions in an XY plane.

The 3102 requires sixteen input words and sixteen output words from the PLC. Power draw from the PLC does not affect the current maximum expansion modules supported by the MicroLogix controllers. This allows a MicroLogix system to drive up to ten axes with a single PLC.

Each axis of the 3102 offers a full 32 bit (± 2 billion+) motor position register, move lengths of up to 2^{31} (± 1 billion+) counts, programmable S-curve acceleration types, five discrete inputs for various control functions and a differential encoder input.

Figure 1.1 3102 Module

The figure to the right shows a 3102 with its front door open. The 3102 requires a forty pin, high density connector for all of its I/O

connections. The I/O connections for axis 1 are on the right column of the connector and connections to axis 2 are on the left.

The 3102 has the following I/O connections for each axis:

- > Differential outputs to your servo or stepper driver. Maximum output frequency is 1 MHz.
- ➤ Single ended outputs to servo or stepper driver. Use these outputs if your driver does not have differential inputs. Maximum output frequency is 100 KHz. You cannot use the differential and single-ended output at the same time.
- Differential quadrature encoder inputs. An encoder can be used by the 3102 for open loop position feed-back or in *Encoder Follower Mode*. In Encoder Follower Mode, the 3102 will generate pulses on the outputs in response to changes on the encoder inputs. This allows you to use the 3102 in electronic gearing applications. The 3102 also allows you to use the Z input on the encoder to define the *Home Position* of the machine. The Home Position is a reference position on the machine that you must define before running one type of move available with the 3102.
- > Home Input. This single ended input is typically used when defining the home position on the machine.
- ➤ CW Limit and CCW Limit Inputs. These single ended inputs are used to define the maximum clockwise and counter-clockwise positions on the machine. If one of these inputs becomes active while traveling in that direction, the 3102 will immediately stop the move.
- Emergency Stop Inputs. If one or both of the CW and CCW Limits are not required, then the input can be configured as an Emergency Stop input. The 3102 will immediately stop the move if an Emergency Stop input becomes active.
- Capture Input. This single ended input can be used to capture the motor position or encoder position during a move. This is useful in applications where you must capture the position value and the event is too short to be captured by the PLC.
- > External Input. A single ended input that can be used to bring moves to a controlled stop.
- > General Purpose Output. This single ended output is controlled through a bit from the PLC.

Module Overview (continued)

Front Panel LED's

The 3102 has five LED's to indicate the status of the module and each of its axes. The POWER LED shows the status of the module while the OK and ERROR LED's show you the status of the axis. The table below lists the information reported by the LED's.

LED	State	Description					
Power	On	Module has power, has passed its internal diagnostics, and is communicating with the PLC.					
	Off	Any of the above are not true					
	On	Axis is OK with no motion in progress					
Axis 1 OK	Blinking	Motion is occurring on the axis					
	Off	Axis is disabled (Axis 1 Error will also be off.)					
	On	PLC communication has been interrupted.					
Axis 1 Error	Blinking	A Configuration, Command, Input, Homing, or Invalid Profile Error exists on the axis.					
	Off	No errors, or the axis is disabled (Axis 1 OK will also be off in this case.)					
	On	Axis is OK with no motion in progress					
Axis 2 OK	Blinking	Motion is occurring on the axis					
	Off	Axis is disabled (Axis 2 Error will also be off.)					
	On	PLC communication has been interrupted.					
Axis 2 Error	Blinking	A Configuration, Command, Input, Homing, or Invalid Profile Error exists on the axis.					
	Off	No errors, or the axis is disabled (Axis 2 OK will also be off in this case.)					

Figure 1.2 Status LED's

Table 1.1 Front Panel LED Description

Modes of Operation

Each axis of the 3102 has two modes of operation, *Configuration Mode* and *Command Mode*.

Configuration Mode

This mode give you that ability to configure the axis for your application without having to set any programming switches and change the axis configuration at any time. The axis must be configured after every power up. The following parameters are set in Configuration Mode:

- > The enabled or disabled state of each of the five inputs
- > The configuration of the CW Limit and CCW Limit as overtravel limits or Emergency Stop inputs
- > The enabled or disabled state of the Backplane Home Proximity bit
- ► If a quadrature encoder will be used or not
- > If Diagnostic Feedback will be used to test the 3102 axis
- ➤ The Output Pulse type (CW/CCW or Step & Direction)
- > If a homing operation will be to the Home Input or the encoder marker pulse
- ➤ The Starting Speed of most moves available with the 3102. This parameter allows you to start a move above the motor's low frequency resonance point and is also useful in microstepping applications.
- The Homing Timeout value. This parameter allows you to automatically stop a homing operation if it takes longer to occur than expected.

Modes of Operation (continued)

Command Mode

This mode give you the ability to set the machine's home position, program, carry out, and control servo or stepper motor moves, detect and reset errors as they occur, and run diagnostics on the I/O if needed.

- > Allows you to set the home position in the machine.
- > Allows you to preset the motor position register
- > Allows you to preset the encoder position register
- > Allows you to run six different move types.

```
Relative Move
Absolute Move
Jog
Registration Move
Blend Move
Encoder Follower
```

See chapter 2, *MOVE PROFILES*, starting on pg 11, for a complete description of all available moves.

- ► Allows you to hold and resume relative and absolute moves
- > Allows you to bring a move to an immediate stop via a backplane bit or hard-wired input
- ► Allows you to reset command errors so a new command can be issued
- > Allows you to feed the driver outputs into the encoder inputs and perform diagnostics.

Compatible Equipment

Servo Equipment

As of the release of this manual, the 3102 has been tested with the Rockwell Automation Ultra 1500 and Ultra 3000 servo drives. Due to its differential and single ended outputs, the 3102 should be compatible with drives from any manufacturer. If you have any questions concerning compatibility, check our website for an up to date list of known compatible equipment or contact AMCI Sales or Technical Support for information.

Stepper Equipment

AMCI has a broad range of stepper drivers and motors that are compatible with the 3102.

Product Family	Description
SD7540 Stepper Driver	A small, (2.2" x 3" x 1") DC powered micro-step driver with a programmable output current of up to 4 amps.
'SD170xx' Stepper Drivers	A complete line of 120Vac powered drivers that offer 170Vdc motor bus and programmable motor currents up to 6 amps.
SD31045 Stepper Driver	A 240Vac powered driver that offers a 310Vdc motor bus and programmable motor current up to 4.5 amps.
'SM' Stepper Motors	A line of NEMA size 23, 34, and 42 motors with holding torques in the range of 130 to 1,870 oz-in. They are all available with optional optical encoders.
'SMD' Stepper Motors	Our NEMA size 23 motors with the SD7540 driver mounted on the back, these motors offer high performance in space con- strained applications.

Table 1.2 AMCI Compatible Equipment

Our stepper product family is constantly growing. Please go to our website at http://www.amci.com for information on these products and others that have been added since the release of this manual.

With the differential and single-ended outputs available on the module, the 3102 should be compatible with most third party stepper drives available today. Feel free to contact AMCI Sales or Technical Support for additional information on any third party stepper equipment you may be using in your project.

Specifications

Compatible Platforms

MicroLogix 1100, 1200, and 1400

Number of Axes

Two independent axis

Motor Control Outputs

Differential and single-ended output available.

Programmable CW/CCW or Step & Direction formats

Discrete Inputs

Five per Axis Home, Capture, CW Limit, CCW Limit, and External

CCW Limit and CCW Limit inputs can be programmed to act as Emergency Stop inputs.

Discrete Outputs

One per Axis

Output state controlled by bit from PLC.

Encoder Inputs

One Encoder per Axis +5Vdc differential ABZ inputs X4 decoding always used by 3102 Maximum pulse train frequency: 250KHz (1MHz maximum counting frequency)

Encoder can be used for position feedback, homing to Z pulse, and with Encoder Follower Mode.

Maximum Number of Modules

1100: 4 per processor

- 1200: 3 per processor
- 1400: 5 per processor

Maximum number assumes that the 3102's are the only expansion modules used in the system.

Number of I/O Words per Module

16 Input Words16 Output Words

Output Wiring

40-pin MIL-C-83503 Header, Keyed

AMCI IM-3R breakout box or Rockwell Automation 1746-N3 Connector Kit can be used for field wiring.

Differential Stepper Outputs

+5Vdc differential (3.5Vdc to 4Vdc peak typical) Maximum Output Current: 20mA Maximum Output Frequency: 1MHz

Single-Ended Stepper Outputs

Open Collector Sinking Voltage Range: 12Vdc to 24Vdc Maximum Output Current: 30mA Maximum Output Frequency: 100KHz An external supply is required for operation.

General Purpose Output

Same electrical specifications as the Single-Ended Stepper Outputs

Input Specifications

Open Collector Sinking All inputs share a common return ON Voltage Range: 8Vdc to 24Vdc OFF Voltage Range: 0Vdc to 2Vdc Maximum Input Current: 15mA @ 24Vdc An external supply is required for operation.

Throughput Time

100 microseconds

Inputs must remain in a steady state for 100 microseconds after a transition for the transition to be recognized.

Programming Storage

RAM Memory. 3102 must be configured on power up.

Backplane Current Draw

110mA from 5Vdc bus 85mA from 24Vdc bus

Environmental Conditions

Operating Temperature: -20 to 65°C (-4 to 149°F)

Relative Humidity: 5 to 95% (w/o condensation) Operating Altitude: Up to 2000m (6560 ft) Storage Temperature: -40 to 85°C (-40 to 185°C)

CHAPTER 2 MOVE PROFILES

When a move command is sent to the 3102, the module calculates the entire profile before starting the move or issuing an error message. This chapter explains how the profiles are calculated and the different available moves.

Units of Measure

Distance: Every distance is measured in steps. Your driver and motor combination will give you a specific number of steps needed to complete one rotation of the motor shaft. It is up to you to determine how many steps are required to travel the required distance in your application.

Speed: All speeds are measured in steps/second. Since the number of steps needed to complete one shaft rotation is determined by your driver and motor combination, it is up to you to determine how many steps per second is required to rotate the motor shaft at your desired speed.

Acceleration: The formulas in the rest of this chapter use a unit of measure of steps/second/second (steps/ second²) for acceleration and deceleration. However, when programming the 3102, all acceleration and deceleration values must be programmed in the unit of measure of steps/millisecond/second.

- ➤ To convert from steps/second² to steps/millisecond/second, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into the 3102.
- ➤ To convert from steps/millisecond/second to steps/second², multiply the value by 1000. This must be done when converting from the value programmed into the 3102 to the value used in the equations.

Definition of Count Direction

Each axis of the 3102 can be configured to output motor pulses in one of two formats, CW/CCW or Step & Direction. The two formats are shown in the figure below. In this figure, a high signal shows the output's active state, while a low signal shows its inactive state. For the differential outputs, an active state is when the +output has a positive voltage with respect to the –output. For the single ended sinking outputs, the active state is when the output is pulling the signal to ground.

		Clockwise Move	Counter-Clockwise Move
CW/CCW	CW		
Outputs	CCW		
Step &	Step		
Direction Outputs	Direction		

Figure 2.1 Directional Outputs

Clockwise moves will always increase the motor position register that is reported back to the PLC. Some of the moves, such as the Jog Move, have a positive and negative command. A positive command, such a the +Jog Move command, will output pulses for a clockwise move.

Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. Once at the Home Position, the motor position register on the 3102 must be set to an appropriate value by using the Preset Position command or one of the \pm Find Home commands. If you use the module's \pm Find Home commands, the motor position and encoder registers will automatically be set to zero once the home position is reached. Defining a Home Position is completely optional. Some applications, such as those that use a servo or stepper for speed control, don't require position data at all.

Definition of Starting Speed

The Starting Speed is the speed that most moves will begin and end at. This value is set while configuring the axis and it has a valid range of 1 to 1,000,000 steps/second. This value is typically used to start the move above the motor's low frequency resonances and in micro-stepping applications to limit the amount of time needed for acceleration and deceleration. AMCI does not specify a default value in this manual because it is very dependent on motor size and attached load.

Definition of Target Position

The Target Position is position that you want the move to end at. There are two ways to define the Target Position, with relative coordinates or absolute coordinates.

Relative coordinates define the Target Position as an offset from the present position of the motor. Most 3102 moves use relative coordinates.

- The range of values for the Target Position when it is treated as an offset is ±1,073,741,823 counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.
- ➤ The Current Motor Position register that is reported back to the PLC is a full 32 bit register. (±2,147,483,647 counts) The only way to move beyond ±1,073,741,823 counts is with multiple moves that are relative.

Absolute coordinates treat the Target Position as an actual position on the machine. Note that you must set the Home Position on the machine before you can run an Absolute Move. (See *Definition of Home Position* on the previous page.)

- ➤ The range of values for the Target Position when it is treated as an actual position on the machine is ±1,073,741,823 counts. The move will be clockwise if the Target Position is greater than the Current Position and negative if the Target Position is less than the Current Position.
- The Current Motor Position register that is reported back to the PLC is a full 32 bit register. (±2,147,483,647 counts) However, you cannot move beyond ±1,073,741,823 counts with an Absolute Move.

Definition of Acceleration Types

With the exception of homing operations, all of the move commands allow you to define the acceleration type used during the move. The 3102 supports three types of accelerations and decelerations.

Linear Acceleration

The axis accelerates (or decelerates) at a constant rate until the programmed speed is reached. This offers the fastest acceleration, but consideration must be given to insure the smoothest transition from rest to the acceleration phase of the move. The smoothest transition occurs when the configured Starting Speed is equal to the square root of the programmed Linear Acceleration. Note that other values will work correctly, but you may notice a quick change in velocity at the beginning of the acceleration phase.

Figure 2.2 Linear Acceleration

Triangular S-Curve Acceleration

The axis accelerates (or decelerates) at a constantly changing rate that is slowest at the beginning and end of the acceleration phase of the move. The Triangular S-Curve type offers the smoothest acceleration, but it takes twice as long as a Linear Acceleration to achieve the same velocity.

Figure 2.3 Triangular S-Curve Acceleration

Trapezoidal S-Curve Acceleration

The Trapezoidal S-Curve acceleration is a good compromise between the speed of Linear acceleration and the smoothness of Triangular S-Curve acceleration. Like the Triangular S-Curve, this acceleration type begins and ends the acceleration phase smoothly, but the middle half of the acceleration phase is linear. Because of this, the Trapezoidal S-Curve acceleration only requires 33% more time to achieve the same velocity as a Linear Acceleration, compared to the 100% more time of a Triangular S-Curve acceleration.

Figure 2.4 Trapezoidal S-Curve Acceleration

A Simple Move

As shown in the figure below, a move from A (Current Position) to B (Target Position) consists of several parts.

- 1) The move begins at point A, where the motor jumps from rest to the configured *Starting Speed*. The motor then accelerates at the programmed *Acceleration Value* until the speed of the motor reaches the *Programmed Speed*. Both the Acceleration Value and the Programmed Speed are programmed when the move command is sent to the 3102.
- 2) The motor continues to run at the Programmed Speed until it reaches the point where it must decelerate before reaching point B.
- 3) The motor decelerates at the Deceleration Value, which is also programmed by the move command, until the speed reaches the Starting Speed, which occurs at the Target Position (B). The motor stops at this point. Note that the acceleration and deceleration values can be different in the move.

Figure 2.5 above shows a Trapezoidal Profile. A Trapezoidal Profile occurs when the Programmed Speed is reached during the move. This occurs when the number of steps needed to accelerate and decelerate are less than the total number of steps in the move.

Figure 2.6 below shows a Triangular Profile. A Triangular Profile occurs when the number of steps needed to accelerate to the Programmed Speed and decelerate from the Programmed Speed are greater than the total number of steps in the move. In this case, the profile will accelerate as far as it can before decelerating and the Programmed Speed is never reached.

Controlled and Immediate Stops

Once a move is started, there are several ways to stop the move before it comes to an end. These stops are broken down into two types:

- > Controlled Stop: The axis immediately begins decelerating at the move's programmed deceleration value until it reaches the configured Starting Speed. The axis stops at this point. The motor position value is still considered valid after a Controlled Stop and the machine does not need to be homed again before Absolute Moves can be run.
- Immediate Stop: The axis immediately stops outputting pulses regardless of the speed the motor is running at. Because it is possible for the inertia of the load attached to the motor to pull the motor beyond the stopping point, the motor position value is considered invalid after an Immediate Stop and the machine must be homed again before Absolute Moves can be run.

Backplane Control

Hold Move Command: This command can be used with some moves to bring the axis to a Controlled Stop. Not all moves are affected by this command. The section *Available Move Types*, starting on page 17, describes each move type in detail, including if the move is affected by this command.

Immediate Stop Command: When this command is issued from the PLC, the axis will come to an Immediate Stop. The move cannot be restarted and the machine must be homed again before Absolute Moves can be run.

Hardware Control

External Input: The External Input can be used with some moves to bring the axis to a Controlled Stop. Not all moves are affected by this input. The section *Available Move Types*, starting on page 17, describes each move type in detail, including if the move is affected by this input.

CW Limit and CCW Limit Inputs: In most cases, activating these inputs during a move will bring the axis to an Immediate Stop. The exceptions are the \pm Find Home commands, the \pm Jog Move commands, and the \pm Registration Move commands. The \pm Find Home commands are explained in chapter 3, *HOMING THE* 3102, which starts on page 23. The \pm Jog Move commands are fully explained on page 18, and the \pm Registration Move commands are fully explained on page 18.

Emergency Stop Input: It is possible to configure the CW Limit Input and/or the CCW Limit Input as an Emergency Stop Input. When an Emergency Stop Input is activated, the axis will come to an Immediate Stop, regardless of the direction of travel.

Profile Equations

This section was added because some of our customers must program very precise profiles. Understanding this section is not necessary before programming the 3102 and it can be considered optional.

The equations in this section allow you to calculate the number of steps and time needed to accelerate and decelerate as well as the time required for the complete move. You will also be able to determine if your move will generate a Trapezoidal or Triangular Profile.

The equations in the rest of this chapter use a unit of measure of steps/second/second (steps/second²) for acceleration and deceleration. However, when programming the 3102, all acceleration and deceleration values must be programmed in the unit of measure of steps/millisecond/second.

- ➤ To convert from steps/second² to steps/millisecond/second, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into the 3102.
- ➤ To convert from steps/millisecond/second to steps/second², multiply the value by 1000. This must be done when converting from the value programmed into the 3102 to the value used in the equations.

Acceleration Equations

The following variables are used in these equations:

- ➤ a = Acceleration/deceleration value. Must be in the units of steps/second²
- ➤ T_A or T_D = Time needed to complete the acceleration or deceleration phase of the move
- ➤ D_A or D_D = Number of Steps needed to complete the acceleration or deceleration phase of the move
- ► V_S = Configured Starting Speed of the move
- ► **V**_P = Programmed Speed of the move

Acceleration Type	T _A or T _D (Time to Accelerate or Decelerate)	D _A or D _D (Distance to Accelerate or Decelerate)	a (Acceleration value based on Ta)
Linear	$T_A = (V_P - V_S)/a$	$D_A = T_A * (V_P + V_S)/2$	$a = (V_P - V_S)/T_A$
Triangular S-Curve	$T_{\rm A} = 2((V_{\rm P} - V_{\rm S})/a)$	$D_A = T_A^* (V_P + V_S)/2^{\dagger}$	$a = (V_P - V_S)/T_A^{\dagger}$
Trapezoidal S-Curve	$T_A = 4/3((V_P - V_S)/a)$	$D_A = T_A^* (V_P + V_S)/2^{\ddagger}$	$a = (V_P - V_S)/T_A^{\ddagger}$

†For these equations, $T_A = 2((V_P - V_S/a))$

 \ddagger For these equations, $T_A = 4/3((V_P - V_S)/a)$

Table 2.1 Acceleration Equations

If the sum of the D_A and D_D values for of the move is *less than* the total number of steps in the move, your move will have a Trapezoidal profile.

If the sum of the D_A and D_D values for of the move is *equal to* the total number of steps in the move, your move will have a Triangular profile and your move will reach the Programmed Speed before it begins to decelerate.

If the sum of the D_A and D_D values for of the move is *greater than* the total number of steps in the move, your move will have a Triangular profile and your move will not reach the Programmed Speed before it begins to decelerate. You can determine your maximum running speed by substituting your T_A equation into your D_A equation and solving for V_P . The value of D_A that you use will depend on the ratio of the acceleration and deceleration values. If both values are the same, use a value of $D_A/2$ in your equation. Once you have determined your maximum running speed, you can determine your T_A and T_D values.

Profile Equations (continued)

Total Time Equations

For Trapezoidal Profiles you must first determine the number of counts that you are running at the Programmed Speed. This value, (D_P below), is equal to your D_A and D_D values subtracted from your total travel. You can then calculate your total profile time, (T_T below), from the second equation.

 $D_P = (Total Number of Steps) - (D_A + D_D)$

 $T_{T} = T_{A} + T_{D} + D_{P}/V_{P}$

For Triangular Profiles, the total time of travel is simply:

$$T_{T} = T_{A} + T_{D}$$

Available Move Types

Relative Move

Relative Moves move an offset number of steps (n) from the Current Position (A). A trapezoidal profile is shown to the right, but Relative Moves can also generate triangular profiles. The current position can be any value and you do not have to set the Home Position before a Relative Move can be run.

The command's Target Position registers hold the move's offset. The offset can be in the range of $\pm 1,073,741,823$ counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.

Relative Moves can be brought to a Controlled Stop by using the Hold Move Command from the backplane or by triggering the External Input. When either of these two inputs are used, the axis will immediately decelerate at the programmed rate and stop. When stopped successfully, the 3102 will set a *Hold State* bit in the input data table. The Relative Move can be restarted with the Resume Move command from the backplane or the move can be aborted. The Resume Move command allows you to change the move's Programmed Speed, Acceleration Value and Type, and the Deceleration Value and Type. The Target Position cannot be changed with the Resume Move Command.

If the External Input is active when a Relative Move is started, the 3102 will output one step in the specified direction before entering the Hold State.

Absolute Move

Absolute Moves move from the Current Position (A) to a given position (B). (The 3102 calculates the number of steps needed to move to the given position and moves that number of steps.) A trapezoidal profile is shown to the right, but Absolute Moves can also generate triangular profiles.

NOTE The *Home Position* on the machine must be set before running an Absolute Move.

One way of setting the Home Position is by presetting the motor position register from the backplane. The other method is by using the *Find Home* commands. Once one of the two \pm Find Home commands is issued, the 3102 will independently drive the axis in the programmed direction until it finds the Home Position, which is defined by sensors attached to the 3102. A complete description of how to use the Find Home commands is given in chapter 3, *HOMING THE 3102*, which starts on page 23.

➤ The command's Target Position registers hold the move's given position. This value can be in the range of ±1,073,741,823 counts. The move will be clockwise if the Target Position is greater than the Current Position and counter-clockwise if the Target Position is less than the Current Position.

Absolute Move (continued)

Absolute Moves can be brought to a Controlled Stop by using the Hold Move Command from the backplane or by triggering the External Input. When either of these two inputs are used, the axis will immediately decelerate at the programmed rate and stop. When stopped successfully, the 3102 will set a *Hold State* bit in the input data table. The Absolute Move can be restarted with the Resume Move command from the backplane or the move can be aborted. The Resume Move command allows you to change the move's Programmed Speed, Acceleration Value and Type, and the Deceleration Value and Type. The Target Position cannot be changed with the Resume Move command.

If the External Input is active when an Absolute Move is started, the 3102 will output one step in the specified direction before entering the Hold State.

±Jog Move

Jog Moves move in the programmed direction as long as the command is active. Two commands are available, the +Jog Move will output CW steps while the –Jog Move will output CCW steps. These commands are often used to give the operator manual control over the axis.

NOTE ≽

The Target Position value must be zero during a Jog Move. If it is not zero, the move will actually be a $\pm Registration Move$, and the final stopping position may be unexpected.

Jog Moves can be brought to a Controlled Stop by turning off the Jog Move command bit from the backplane or activating the External Input. The axis will decelerate at the programmed rate to the configured Starting Speed and stop. The 3102 will output one step in the specified direction if the External Input is active when a Jog Move is started.

The CW Limit and CCW Limit inputs behave differently for $\pm Jog$ Moves than all other move types except for $\pm Registration$ Moves. Like all moves, activating a limit that is the same as the direction of travel, for example activating the CW Limit during a +Jog Move, will bring the move to an Immediate Stop. Unlike the other moves, activating a limit that is opposite to the direction of travel, for example activating the CCW Limit during a +Jog Move, bas no effect. This allows you to jog off of the activated limit switch.

If the initial Programmed Speed is greater than the configured Starting Speed when the command is issued, then the move's Programmed Speed, Acceleration Value and Type, and Deceleration Value and Type can be changed while the move is running. The axis will accelerate or decelerate to the new Programmed Speed when it is changed. Note that the acceleration and deceleration parameters are not changed unless the Programmed Speed is also changed.

If the initial Programmed Speed is set to a value less the configured Starting Speed when the command is issued, the 3102 will perform a *Constant Speed Jog*. The move will run at the Programmed Speed only. The move's Programmed Speed, Acceleration Value and Type, and Deceleration Value and Type cannot be changed while the move is running. Attempting to do so will cause an error.

If the Programmed Speed is set to zero when the command is issued, the 3102 will perform a *One Shot Jog* and output one pulse in the specified direction. The pulse is output at the configured Starting Speed.

±Registration Move

Similar to a Jog Move, a Registration Move will travel in the programmed direction as long as the command is active. +Registration Moves result in CW output pulses, –Registration Moves result in CCW output pulses. When the command terminates under Controlled Stop conditions, the 3102 will output a programmed number of steps as part of bringing the move to a stop. Controlled Stop conditions are resetting the command bit from the backplane or activating the External Input. Note that all position values programmed with a Registration Move are relative values, not absolute machine positions.

Figure 2.9 Registration Move

If the Programmed Number of Steps are less than the number of steps needed to bring the axis to a stop based on the Programmed Speed and Deceleration values set with the command, the 3102 will issue an error message instead of starting the move. An error message will also be issued if the External Input is active when a Registration Move is initiated.

Like the \pm Jog Moves, activating a limit that is opposite to the direction of travel, for example activating the CCW Limit during a +Registration Move, has no effect.

An additional feature of the 3102 is the ability to program the module to ignore the Controlled Stop conditions until a minimum number of steps have occurred. This value is programmed through the Minimum Registration Move Distance parameter, which is set through a separate command. This value is stored until the module is re-configured. Figure 2.10 shows how the Minimum Registration Move Distance parameter effects when the Stop Condition is applied to the move. As shown in the second diagram, Controlled Stop conditions are level triggered, not edge triggered. If a Controlled Stop Condition occurs before the Minimum Registration Move Distance is reached and stays active, the move will begin its controlled stop once the Minimum Registration Move Distance is reached.

Figure 2.10 Min. Registration Move Distance

±Registration Move (continued)

The Programmed Speed can be changed while the move is occurring under the following conditions:

- > The value cannot be changed once a Controlled Stop condition occurs
- > The value can only be decreased.
- When changing the Programmed Speed, the Acceleration and Deceleration values must be the same as they were when the original command was sent to the module.

All other parameter values are fixed when the command is first issued.

±Blend Move

This command allows you to create more complicated move profiles consisting of two to sixteen segments that are all programmed using relative values. A +Blend Move results in CW output pulses, a –Blend Move result in CCW output pulses. The figure below shows a three segment Blend Move that is run twice. It is first run in the clockwise direction, and then in the counter-clockwise direction.

Each segment is programmed with a programming block sent from the PLC using the Output Image Table words assigned to the axis. The first programming block specifies the total number of segments in the move as well as the acceleration types used for each segment and the final deceleration value. You need one additional programming block for each segment that programs the Segment Length, the Programmed Speed for the segment, and the Acceleration/Deceleration value used to reach the Programmed Speed for the segment.

The minimum amount of changing information needed to define a new move segment is the Programmed Speed. The Segment Length and the Acceleration/Deceleration rate do not have to change from one segment to the next. An Invalid Profile Error will be generated if the Programmed Speed parameter is not different in two consecutive blend move segments. An Invalid Profile Error will also be issued if the segment length does not contain enough steps to reach the Programmed Speed based on the programmed Acceleration Type and Value.

The blend move programming is done before the move is begun, with all of the segments of the blend move profile stored in the internal memory of the 3102. This data will remain in the module's memory until power is removed from the module, the configuration data is programmed, or a new blend move profile is programmed for the axis. Once stored, multiple Blend Move commands can be run on the data stored in memory. You do not have to re-program the Blend Move segment before every move.

When a \pm Blend Move command is issued, the first segment starts at the configured Starting Speed and accelerates to the specified Programmed Speed. The starting speed for the next segment is equal to the Programmed Speed of the current segment. The final segment will decelerate from its Programmed Speed to the Starting Speed and then stop. It is not possible to program a direction reversal in the Blend Move profile.

±Blend Move (continued)

Blend Moves cannot be brought into a Hold State. The External Input is ignored during a Blend Move and issuing a Hold command will only result in the *Command Error* bit being set. The move profile will continue until until it is complete, at which time the error bit will be reset.

±Encoder Follower Moves

An encoder is typically used in an open-loop system for position verification. The encoder is mounted to the back of the controlled motor and the encoder position is read after a move to verify that the motor moved as expected.

When the 3102 is used in Encoder Follower mode, the encoder is not mounted on the controlled motor. Instead, the encoder is typically mounted on a second motor, but it can be mounted anywhere, including on something as simple as a hand crank. While in this mode, the 3102 does not accept move commands over the backplane. Instead, the 3102 will output motor control pulses in response to pulses on the encoder inputs.

Two commands are available. The +Encoder Follower Move will output clockwise pulses when the encoder count is increasing and the -Encoder Follower Move will output counter-clockwise pulses when the encoder count is increasing.

The 3102 increases the encoder count register when the encoder's A signal is leading the B signal.

The External Input is ignored when the axis is in Encoder Follower mode.

This mode is also known as Electronic Gearing, because the motor behaves as if it is mechanically geared to the encoder. The 3102 has Multiplier and Divisor parameters that allow you to adjust the ratio between the encoder and the motor. The Multiplier and Divisor parameter each have a range of 1 to 32,768. It is possible to enter a ratio greater than one when programming these values. The 3102 will output multiple steps per encoder count.

As with all encoder functions on the 3102, X4 decoding is used when changing the encoder count register. This fact must be taken into account when calculating the appropriate Multiplier and Divisor values.

Maximum encoder input frequency is 250KHz. This translates to a maximum motor output frequency of 1 MHz.

Maximum motor output frequency is 1 MHz. It is possible for your application to exceed this frequency when the Multiplier/Divisor ratio is greater than one. For example, assume your Multiplier/Divisor ratio is 3, and your encoder input frequency is 125 KHz. Ideally, your motor output frequency would be:

125KHz X 4{decoding} X 3{ratio} = 1.5MHz

As this exceeds the 1 MHz limit, the 3102 will output pulses at 1MHz until motor position catches up with the encoder position.

The Linear Acceleration type is the only one available when using Encoder Follower Moves. Unlike other moves, the Acceleration and Deceleration values can be set to zero with this move type. If they are zero, the axis will immediately match the encoder speed when a move begins. If this stalls the motor, set the Acceleration and Deceleration parameters to their maximum value of 2000 steps/millisecond/second. If a move still causes the motor to stall, then decrease the Acceleration and Deceleration values until the motor runs correctly.

NOTE 1) The 3102 will always output the correct number of steps when operating in this mode. However, the use of the Acceleration and Deceleration parameters, especially low values, can cause the motor's motion to lag behind the encoder's motion.

> 2) If the Acceleration and Deceleration parameters are set to zero, electrical noise on the encoder inputs may cause the motor to oscillate back and forth by ± 1 step when there is no encoder motion.

ADVANCED MICRO CONTROLS INC.

CHAPTER 3 HOMING THE 3102

This chapter explains the various ways of homing an axis on the 3102. Inputs used to home the module are introduced and diagrams that show how the module responds to a homing command are given.

Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. Once at the Home Position, the motor position register on the 3102 must be set to an appropriate value. If you use the module's \pm *Find Home* commands, the motor position register will automatically be set to zero once the home position is reached. The Encoder Position register will also be reset to zero if the quadrature encoder is enabled for the axis.

NOTE ≽

Defining a Home Position is completely optional. Some applications, such as those that use a servo or stepper for speed control, don't require position data at all.

With the exception of Absolute Moves, the 3102 can still perform all of its move commands if the Home Position is not defined.

Position Preset

One of the ways to define the Home Position is to issue the Preset Position command to the 3012 axis. Before doing this, you will need a way of sensing position outside the 3102 module. One possibility is by using an AMCI 1141 or 1142 Resolver Interface module for the MicroLogix PLC to sense the absolute position of the machine. Another possibility is an AMCI 7161 or 7162 SSI Interface module for the MicroLogix system and an SSI sensor. In either case, the position data must be brought into the PLC, the correct preset value calculated, and this value written to the 3102 axis with the Position Preset command.

±Find Home Commands

The other choice is to use the module's Find Home commands to order the 3102 to find the Home Position based on sensors brought into the unit. The +Find Home command begins searching by outputting CW pulses to the motor's driver and ends when the home sensor triggers while the 3102 is outputting CW pulses at a low rate. The –Find Home command operates in the same way but starts and ends with CCW pulses.

Homing Inputs

Five inputs can be used when homing the module. These inputs are either physical inputs attached to the module or bits in the PLC output data words.

Physical Inputs

- ➤ Home Input: This input is used in one of two ways: 1) This input is used to define the actual home position of the machine. 2) The input is used as a home proximity input when using the encoder marker pulse to home the machine.
- ► Encoder Marker (Z) Pulse: If you configure the 3102 to use an encoder, you have the option of using the encoder's marker pulse to home the 3102.
- **CW Limit Switch Input:** This input is used to prevent overtravel in the clockwise direction.
- **CCW Limit Switch Input:** This input is used to prevent overtravel in the counter-clockwise direction.

Backplane Inputs

▶ Home Proximity Bit: The 3102 can be configured to ignore changes on the physical homing input until the Home Proximity Bit makes a $0 \rightarrow 1$ transition. The 3102 will home on the next inactive-to-active change on the physical input once this transition occurs. You must program your PLC to control the state of this bit.

Homing Configurations

The 3102 axis must be correctly configured before one of the homing commands will be accepted. One of the following must be part of the axis configuration before you can run the homing commands.

- 1) Home Input Enabled with Home Operation To Home Input
- 2) Home Input and Backplane Home Proximity Operation Enabled with Home Operation To Home Input
- 3) Home Input and Encoder Enabled with Home Operation to Marker Pulse. (In this configuration, the Home Input acts as a hardware home proximity input.)
- 4) Encoder and Backplane Home Proximity Operation Enabled with Home Operation To Marker Pulse

NOTE A homing operation can occur without configuring the axis to use the CW Limit or CCW Limit inputs. If you choose to configure the axis in this way, the axis has no way to automatically prevent overtravel during a homing operation. You must prevent overtravel by some external means, or ensure that the homing command is issued in the direction that will result in reaching the homing input directly.

In addition to the above settings, the Homing Timeout parameter will also be set. This parameter sets a maximum number of seconds the 3102 axis will attempt to find the Home Position before it fails with an error. The range is 0 to 300 seconds, with a value of zero disabling the timeout feature.

Homing Profiles

The +Find Home command is used in all of these examples. The –Find Home command will generate the same profiles in the opposite direction.

Home Input Only Profile

Figure 3.1 below shows the move profile generated by a +Find Home command when you use the Home Input without the Backplane Home Proximity bit.

Figure 3.1 Home Input Profile

- 1) Acceleration from the configured Starting Speed to the Programmed Speed
- 2) Run at the Programmed Speed until the Home Input activates
- 3) Deceleration to the Starting Speed and stop, followed by a two second delay.
- 4) Acceleration to the Programmed Speed opposite to the requested direction.
- 5) Run opposite the requested direction until the Home Input transitions from Active to Inactive
- 6) Deceleration to the Starting Speed and stop, followed by a two second delay.
- 7) Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from inactive to active.

NOTE ≽

) If the Home Input is active when the command is issued, the move profile begins at step 5 above.

Homing Profiles (continued)

Profile with Proximity Input

Figure 3.2 below shows the move profile generated by a +Find Home command when you use:

- ► Home Input with Backplane Home Proximity bit
- > Marker Pulse home with Home Input as proximity sensor
- > Marker Pulse home with Backplane Home Proximity bit

Figure 3.2 Homing with Proximity

- 1) Acceleration from the configured Starting Speed to the Programmed Speed
- 2) Run at the Programmed Speed
- 3) Ignores homing input, (Home Input or Marker Pulse) because proximity input has not made a 0→1 transition.
- 4) Deceleration towards the Starting Speed when the proximity input (Backplane bit or Home Input) transitions from its inactive to active state. The axis will stop as soon as the Home Input becomes active.
- 5) The Starting Speed is the minimum speed the profile will run at. If the axis decelerates to the Starting Speed before reaching the Home Input, it will continue at this speed.

NOTE Figure 3.2 shows the Backplane Home Proximity Bit staying active until the 3602 reaches its home position. This is valid, but does not have to occur. As stated in step 4, the 3602 starts to hunt for the home position as soon and the Backplane Home Proximity Bit makes a $0 \rightarrow 1$ transition

Homing Profiles (continued)

Profile with Overtravel Limit

Figure 3.3 below shows the move profile generated by a +Find Home command when you use:

- ► CW Overtravel Limit
- ➤ Home Input without Backplane Home Proximity Bit

The profile is generated when you encounter an overtravel limit in the direction of travel. (In this example, hitting the CW limit while traveling in the CW direction.) Hitting the overtravel limit associated with travel in the opposite direction is an Immediate Stop condition. The axis will stop all motion and issue a *Home Invalid* error to the PLC.

The 3102 will stop the axis with an error if both overtravel limits are activated while the 3102 is trying to find the home position.

Figure 3.3 Profile with Overtravel Limit

- 1) Acceleration from the configured Starting Speed to the Programmed Speed
- 2) Run at the Programmed Speed
- 3) Hit CW Limit and immediately stop, followed by a two second delay.
- 4) Acceleration to the Programmed Speed opposite to the requested direction.
- 5) Run opposite the requested direction until the Home Input transitions from Active to Inactive
- 6) Deceleration to the Starting Speed and stop, followed by a two second delay.
- 7) Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from inactive to active.

If the overtravel limit is active when the Find Home Command is active, the profile will begin at step 4.

CHAPTER 4 INSTALLING THE 3102

Location

1762 I/O, including the 3102, is suitable for use in an industrial environment that meet the following criteria:

- Only non-conductive pollutants normally exist in the environment, but an occasional temporary conductivity caused by condensation is expected.
- Transient voltages are controlled and do not exceed the impulse voltage capability of the product's insulation.

Note that these criteria apply to the system as a whole, not just to the 3102.

These criteria are equivalent to the *Pollution Degree 2* and *Over Voltage Category II* designations of the International Electrotechnical Commission (IEC).

Safe Handling Guidelines

Prevent Electrostatic Damage

(**!** CAUTION)

Electrostatic discharge can damage the 3102 if you touch the bus connector pins. Follow these guidelines when handling the module.

- 1) Touch a grounded object to discharge static potential before handling the module.
- 2) Work in a static-safe environment whenever possible.
- 3) Wear an approved wrist-strap grounding device.
- 4) Do not touch the pins of the bus connector or I/O connector.
- 5) Do not disassemble the module
- 6) Store the module in its anti-static bag and shipping box when it is not in use.

Prevent Debris From Entering the Module

🚺 WARNING

During panel or DIN rail mounting of all devices, be sure that all debris (metal chips, wire strands, tapping liquids, etc.) is prevented from falling into the module. Debris may cause damage to the module or unintended machine operation with possible personal injury.

Remove Power Before Servicing

U WARNING

The 1762 I/O bus is not hot swap capable, so remove power before removing or installing any module. If you remove or install a module with power applied, an electric arc may occur. In addition to causing excessive wear on the contact of the connectors, this electrical arc can cause personal injury or property damage by:

- 1) sending a faulty signal to your system's field devices, causing unintended machine operation
- 2) causing an explosion in a hazardous environment
- 3) causing permanent damage to the module that may result in its immediate failure or shorten its service life.

Mounting

Minimum Spacing

As shown in figure 4.1, you must maintain a minimum spacing of 2 inches (50.8 millimeters) from enclosure walls, wireways, adjacent equipment, etc. for adequate system ventilation.

Also note that all 1762 expansion I/O must be mounted in the orientation shown in the figure. Mounting the system in any other orientation will decrease the efficiency of the ventilation slots on the top and bottom of each module which may lead to system overheating and malfunction.

Figure 4.1 Ventilation Spacing

Panel Mounting

Panel mounting is the required mounting method for environments where the system will be exposed to high shock and/or vibration values. Use figure 3.2 to design a template to mount your system. Note that dimensions for each MicroLogix PLC are specific to each model number so you must refer to the PLC documentation to determine those dimensions.

Two mounting screws are required for every module. The preferred hardware is M4 of #8 panhead screws. M3.5 or #6 panhead screws can also be used, but you may have to install a washer to ensure good ground contact.

Figure 4.2 Panel Mounting Dimensions

Mounting (continued)

DIN Rail Mounting

The module can be mounted on following DIN Rails

- ► EN 05 022 35 x 7.5 (35 x 7.5 mm)
- ► EN 05 022 35 x 15 (35 x 15 mm)

Close the DIN rail latch on the module before mounting the module on the rail. Press the DIN rail mounting area of the module against the rail. The latch will open as you install the module and will snap into place when the module is properly seated on the DIN rail.

If the system will be exposed to limited shocks of vibrations then use Allen-Bradley DIN rail end anchors to secure the system as shown in figure 4.3. The Allen-Bradley part numbers for these anchors are 1492-EA35 and 1492-EAH35.

Figure 4.3 DIN Rail Mounting

NOTE **>**

If your system will be exposed to large amounts of shock or vibration, you should panel mount your system instead of mounting it to a DIN rail. Instructions for panel mounting are given on the previous page.

System Assembly

The communications bus is carried between the modules through the ribbon cable attached to every module. Once the system is properly mounted, you can connect the I/O modules together and to the PLC as shown in figure 4.4.

- **NOTE**) Use the pull loop on the connector to disconnect modules. Do not pull on the ribbon cable as this may damage the module.
 - 2) The bus connector covers must be re-installed after the bus connections are made.

Figure 4.4 Bus Connectors

Terminal Block Pinout

The following table lists the pinout of the 40 pin high density connector on the 3102.

Pin #	Function	Pin #	Function
40	No Connection	39	Output Common
38	Output 2	37	Output 1
36	CH2 Dir/CCW_OC	35	CH1 Dir/CCW_OC
34	CH2 Step/CW_OC	33	CH1 Step/CW_OC
32	CH2 –Dir/CCW	31	CH1 –Dir/CCW
30	CH2 +Dir/CCW	29	CH1 +Dir/CCW
28	CH2 – Step/CW	27	CH1 –Step/CW
26	CH2 +Step/CW	25	CH1 +Step/CW
24	CH2 –Z Encoder	23	CH1 –Z Encoder
22	CH2 +Z Encoder	21	CH1 +Z Encoder
20	CH2 –B Encoder	19	CH1 –B Encoder
18	CH2 +B Encoder	17	CH1 +B Encoder
16	CH2 – A Encoder	15	CH1 –A Encoder
14	CH2 +A Encoder	13	CH1 +A Encoder
12	No Connection	11	Input Common
10	CH2 Home Input	9	CH1 Home Input
8	CH2 External Input	7	CH1 External Input
6	CH2 Capture Input	5	CH1 Capture Input
4*	CH2 CCW Limit Input	3*	CH1 CCW Limit Input
2*	CH2 CW Limit Input	1*	CH1 CW Limit Input

Table 4.1 3102 Connector Pinout

* By default, this inputs are CW and CCW Limit switch (overtravel) inputs. Any, and even all, of them can be configured to be Emergency Stop inputs.

1746-N3 Connector Kit

A connector kit is available from Allen-Bradley that contains a 40 pin mating connector for the 3102 along with forty individual crimp pins. This kit allows you to make you own custom cable and is available under the Allen-Bradley part number 1746-N3. Instructions on using this kit are available from Allen-Bradley.

IM-3R Interface Module

AMCI offers a breakout box to simplify field wiring to the 3102. The IM Interface Module is designed to be DIN rail mounted and can be attached to either of the rails that the MicroLogix system can be mounted on. The kit includes a three foot round ribbon cable to connect to the 3012 module. Dimensions for the IM module are given below.

Figure 4.5 IM Interface Module Dimensions

General Wiring Guidelines

Allen-Bradley has a reference document, *Industrial Automation Wiring and Grounding Guidelines* that should be followed when installing the 3102. The document's catalog number is 1770-4.1 and it is available online from the www.ab.com website.

When using the guidelines, all I/O wiring for the 3102 should be treated as Category 2 wiring (Signal and Communication). If you are using the IM-3R Interface Module from AMCI, the rounded ribbon cable that connects the IM to the 3102 should be treated as Category 3 wiring (Intra-enclosure).

Driver Wiring

Connections to your driver can be made through the module's differential outputs or the single-ended open collector sinking outputs. You cannot use both output types at the same time.

Differential Wiring

Differential outputs are low voltage, low current outputs that require shielded, twisted pair cable to carry the signals. A suggested cable is the Belden 9729, which supports a 1 MHz pulse frequency to over 1000 feet of cable length, but any quality, shielded, twisted pair cable should suffice. A simple wiring diagram is shown below. Note that the cable shields should be grounded at the module end only.

Open Collector Wiring

All open collector outputs in the 3102 share a single common pin that must be tied to the ground connection of the power supply powering the outputs. Therefore, all outputs are open collector sinking. Figure 4.7 below shows how to wire the outputs to open collector sourcing inputs on your driver.

Figure 4.7 Open Collector Driver Wiring (Sourcing Inputs)

RLIM may be needed to limit current flow. The 3102 drivers can conduct a maximum of 30 milliamps. The exact value of RLIM is based on the power supply voltage and the current requirements of the Driver Inputs.

Driver Wiring (continued)

Open Collector Wiring (continued)

It is also possible to wire the 3102 outputs to an open collector sinking input on a driver by using pull up resistors.

Figure 4.8 Open Collector Driver Wiring (Sinking Inputs)

Carefully select the value of the pull up resistors. (RPU in the figure.) The 3102 outputs can conduct a maximum of 30 milliamps without damage, so the minimum resistor value is 400 ohms / 0.5 watt when using a 12 Vdc supply and 800 ohms / 1.0 watt when using a 24 Vdc supply. You must increase the size of these resistors if the inputs to your Driver cannot conduct 30 milliamps without damage.

General Purpose Output Wiring

The two General Purpose Outputs are electrically identical to the open collector Step/CW_OC and Dir/CCW_OC outputs available on each axis. The General Purpose Outputs shares a common ground pin, (pin 39) with these outputs. Wiring is identical to the diagrams given in figures 4.7 and 4.8.

The General Purpose Output can, but does not have to, use the power supply that powers the open collector Driver Outputs of the 3102. If you use two different supplies, the low side of the supplies must be tied together at pin 39 of the 3102. For this reason, the two supplies should be mounted close together and share the same Earth Ground bus to avoid ground loop issues.

Discrete Input Wiring

The discrete inputs are all open collector sinking type with a single common. They accept 8Vdc to 24Vdc signals. Figure 4.9 below shows how to wire an input to a typical three wire sourcing sensor.

Encoder Wiring

Differential Encoder Wiring

The encoder inputs on the 3102 accept 5Vdc differential signals from your incremental encoder. AMCI offers optical encoders that can be mounted to any of our dual-shaft stepper motors. Figure 4.10 below shows a typical encoder installation using the color codes of our optical encoders. Note that there is no single color coding standard in the encoder market so you must refer to your encoder's documentation if you are not using an AMCI optical encoder.

2) Shield is usually grounded where the signal is generated. If a good quality earth ground connection is not available at the encoder, the shield can be grounded to the same Ground Bus as the PLC rack.

Figure 4.10 Differential Encoder Wiring

Encoder Wiring (continued)

Single Ended Wiring

Figure 4.11 below shows how to wire the encoder inputs to both a single ended sourcing and single ended sinking encoder outputs.

! CAUTION

The encoder inputs on the 3102 are rated for 5Vdc only. You must use a current limiting resistor on each input if the outputs of your encoder are greater than 5Vdc. Appropriate current limiting resistors are shown in the figure below.

3102 Encoder Input Connection to Sourcing Encoder Output

Figure 4.11 Single Ended Encoder Wiring

Diagnostic Feedback Wiring

The 3102 can be place in a Diagnostic Feedback Mode that allows you to check the functionality of the differential motor control outputs and the encoder A and B inputs. You must wire the outputs to the inputs as shown in the table below before you can use this mode.

	Wire This P	in		To This Pin				
Axis #	Function	Pin #	Pin #	Function				
1	+Step	25	13	+A				
1	–Step	27	15	-A				
1	+Direction	29	17	+B				
1	-Direction	31	19	-B				
2	+Step	26	14	+A				
2	–Step	28	16	-A				
2	+Direction 30		18	+B				
2	-Direction	32	20	-B				

Table 4.2 Diagnostic Feedback Wiring

RSLogix 500 CONFIGURATION

The 3102 requires 16 input words and 16 output words in order to communicate with a MicroLogix controller. This chapter outlines how to add a 3102 module to you project and configure the I/O.

Add the 3102 to Your Project

- 1) Open or create the RSLogix 500 project in which you wish to use the 3102.
- 2) Double click on the I/O Configuration leaf of the project tree...

The I/O Configuration window will open.

3) Select the slot where the 3102 will be installed.

III I/O Configuration		
PowerSupply # Part # Description 0 Bul.1766 MicroLogix 1400 Series A 1 OTHER I/O Module - ID Code = 15 2 3 4 5 6 7	Current Cards A	Filter All ID Description 8-Input 79/132 VAC Analog 2 Chan. Input, 2 Chan. Output Analog 4 Chan. Input 8-Input 10/30 VDC 9-Input 10/30 VDC 8-Output 120/240 VAC 8-Output (TRANS-SRC) 10/50 VDC 16-Output (TRANS-SRC) 10/50 VDC 16-Output (RLY) 240 VAC 4-Channel Thermocouple Input Module 4-Channel RTD/Resistance Input Module 4-Channel Analog I/V Output Module 6-Ch High Current Isolated Relay Outputs Other Requires I/O Card Type ID
Adv Config Help Hide All Cards		

In the Current Cards Available pane on the right, double click on Other-Requires I/O Card Type ID.

Add the 3102 to Your Project (continued)

4) Enter the module data in the I/O slot configuration window that appears. The correct data is shown in the figure below. When you are finished, click the [OK] button.

Module #1: OTHER - I/O Module - ID Code = 15	×
Expansion General Configuration	
Vender ID:	
Product Type : 16	
Product Code : 15	
Series/Major Rev/MinorRev : 🛛	
Input Words : 16	
Output Words : 16	
Extra Data Length : 0	
Ignore Configuration Error : 🗖	
OK Cancel Apply He	alp

5) Repeat steps 1 through 4 for each additional 3102 you wish to add to your project.

Finding the 3102 in Your Project

Each 3102 module will appear in the I/O Configuration section of your project tree with the part number of "OTHER" and a description of "I/O Module - ID Code = 15". If you have multiple 3102 modules in your project, they will all have the same part number and description. You can have up to four modules in an 1100 project, up to three modules in a 1200 project, and up to five modules in a 1400 project.

Data Location

Input Data (data from the 3102 to the PLC) will appear in the Input Image Table registers I:X.0 to I:X.15, where X is the module's slot number.

Output Data (data from the PLC to the 3102) must be written to the Output Image Table registers O:X.0 to O:X.15, where X is the module's slot number.

PLC I/O Errors

Your PLC may suffer from I/O Errors if your PLC program is relatively short. This is caused by the fact that the 3102 uses 16 Input data words and 16 Output data words and short PLC programs can be scanned faster than the module I/O can be transfered. The following code, which is also available in the sample program, can be used to increase the PLC scan time. The sample program is available on our website, www.amci.com, under the "Tech Library" heading.

In order to use the 3102 module, the scan time must be increased. The following two range accomplish this by jumping back and forth until the count value contained in N13:0 is equal to the value entered in Source B of the LES instruction.

Please note that a longer ladder logic program may not require the use of this logic, or it may enable you to use a maximum count value less than 750.

0<

N13:0

Dest

Notes

CHAPTER 6

CONFIGURATION MODE DATA FORMAT

The 3102 has two modes of operation, Configuration Mode, and Command Mode. This chapter describes the format of data written to and read from the module when it is in Configuration Mode.

NOTE ≽

The 3102 will always power up with both axes in Command Mode and report a configuration error. An axis must be configured before you can issue move commands to the axis. Note that the two axes are independent, and it is acceptable to have one axis in Configuration Mode while the other is in Command Mode.

Output Data Format

The following table shows the format of the output image table words when writing configuration data to both axes of the 3102.

Word O:X	Axis	Function	Units	Range
0	1	Configuration Bits MSW		See Description Below
1	1	Configuration Bits LSW		See Description Below
2	1	Starting Speed MSW	Stong/Second	1 to 1 000 000
3	1	Starting Speed LSW	Steps/Second	1 10 1,000,000
4	1	Homing Timeout	Seconds	0 to 300
5	1	Reserved, Must be 16#0000		
6	1	Reserved, Must be 16#0000		
7	1	Reserved, Must be 16#0000		
8	2	Configuration Bits MSW		See Description Below
9	2	Configuration Bits LSW		See Description Below
10	2	Starting Speed MSW	Stops/Second	1 to 1 000 000
11	2	Starting Speed LSW	0 Steps/Second	1 10 1,000,000
12	2	Homing Timeout	Seconds	0 to 300
13	2	Reserved, Must be 16#0000		
14	2	Reserved, Must be 16#0000		
15	2	Reserved, Must be 16#0000		

Table 6.1 Output Data Format - Configuration Data

Configuration Bits MSW

Word 0 configures Axis 1, Word 8 configures Axis 2

	Set These Bits To																
To Make The	ese Settings	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Conturo Input	Disabled																0
Capture Input	Enabled																1
External Innut	Disabled															0	
External input	Enabled				o.											1	
Homo Input	Disabled				zel										0		
Home input	Enabled				0										1		
	Not Used				set								0	0			
CW Input	CW Limit Switch				e :								0	1			
C w Input	E-Stop Input				s								1	0			
	Do Not Use				/ay								1	1			
CCW Input	Not Used			-	aiw						0	0					ĺ
	CCW Limit Switch				SI						0	1					
	E-Stop Input				nu						1	0					
	Do Not Use				۶۷ ا						1	1					
Backplane Home	Disabled			Ē						0							
Proximity Operation	Enabled									1							
Ouedaeture Enceder	Will Not Be Used				ve				0								
Quadrature Encoder	Will Be Used				ser				1								
Diagramatic Easthast	Will Not Be Used			ć	Кe			0									
Diagnostic Feedback	Will Be Used				Le			1									
	CW/CCW				3 а		0										
Output Pulse Type	Step & Direction				×		1										
Hama Onemation	To Limit Switch			Ċ	7	0											
Home Operation	To Marker Pulse				S	1											ĺ
Card Axis	To Enable		0		פו												
	To Disable		1														
Operation Mode for	Command Mode	0															
Axis	Configuration Mode	1															
Write in Your E	Bit Pattern Here:			0	0												

Table 6.2 Configuration Bits MSW

Do not set the Backplane Home Proximity Operation bit if you intend to only home to a Home Limit Switch. This bit should only be set if you need to use the Backplane Home Proximity bit to force the 3602 to ignore multiple triggers on the home input.

Configuration Bits LSW

Word 1 configures Axis 1, Word 9 configures Axis 2

			Set These Bits To							Го							
To Make The	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Capture Input	Active Low [†] (NC)																0
Active State	Active High [‡] (NO)																1
External Input	Active Low (NC)															0	
Active State	Active High (NO)															1	
Home Input	Active Low (NC)														0		
Active State	Active High (NO)														1		
CW (or E-Stop)	Active Low (NC)													0			
Input Active State	Active High (NO)													1			
CCW (or E-Stop)	Active Low (NC)												0				
Input Active State	Input Active State Active High (NO)												1				
Write in Your Bit Pattern Here:			0	0	0	0	0	0	0	0	0	0					
		Bits 5 through 15 are Reserved. They must always be set to zero.															

Active Low inputs are considered active when they are not conducting current. (Voltage on the input is between 0Vdc and 2Vdc.)

Active High inputs are considered active when they are conducting current. (Voltage on the input is between 8Vdc and 24Vdc.

Table 6.3 Configuration Bits LSW

Starting Speed

The Starting Speed parameter sets the step frequency that all moves begin and end at. Portions of a homing operation are also performed at this speed. This parameter is also useful in microstepping applications when it is not necessary to accelerate from a full stop. The range of the Starting Speed parameter is 1 to 1,000,000 steps per second. Because this value can be greater than 16 bits, this parameter is split into two 16 bit words when put into the Output Image Table. The following table shows how to split the Starting Speed parameter value. The 3102 sample program, which is available from the AMCI website, contains a sub-routine called *Separate* that shows how to perform this function.

Desired Value (dec)	Desired Value (hex)	MSW (hex)	MSW (dec)	LSW (hex)	LSW (dec)
999	16#0000:03E7	16#0000	0	16#03E7	999
50,800	16#0000:C670	16#0000	0	16#C670	-14,736
94,784	16#0001:7240	16#0001	1	16#7240	29,248

Table 6.4 Starting Speed Sample Values

NOTE ≽

1) As a suggestion, a Starting Speed that is equal to the square root of the acceleration rate will create a profile without any jumps in velocity at the beginning of the move profile. The same holds true for the end of the move profile if the Starting Speed is equal to the square root of the deceleration rate.

2) The Starting Speed can always be programmed in the range of 1 to 1,000,000 steps per second. This 1 MHz output frequency can only be reached by the differential outputs of the 3102. The module's 24Vdc open collector outputs are limited to a maximum output frequency of 100,000 steps per second.

Homing Timeout

The Homing Timeout parameter defines how long a homing operation will be allowed to continue before motion stops and the 3102 sets its *Home Invalid* status bit. (The *Home Invalid* status bit is available when the axis is in Command Mode.) The Homing Timeout parameter has a range of 0 to 300 seconds. Setting this parameter to a value of 0 disables this feature and the 3102 will search for the home marker until it finds it or the command is aborted by the PLC.

Input Data Format

While in Configuration Mode, the input registers assigned to the 3102 will echo back the last configuration data written to the axis. The only exceptions are bits 13 through 15 in the Configuration Bits MSW of each axis.

The following table shows the format of the input image table words when both axes are in Configuration Mode. Note that the two axes are completely independent, and it is acceptable to have one axis in Configuration Mode while the other is in Command Mode.

Word I:X	Axis	Description
0	1	Mirror of Configuration Bits MSW, (Bits $0 - 12$)*
1	1	Mirror of Configuration Bits LSW
2	1	Mirror of Starting Speed MSW
3	1	Mirror of Starting Speed LSW
4	1	Mirror of Homing Timeout
5	1	Not used in Configuration Mode, will always be 16#0000
6	1	Not used in Configuration Mode, will always be 16#0000
7	1	Not used in Configuration Mode, will always be 16#0000
8	2	Mirror of Configuration Bits MSW, (Bits $0 - 12$)*
9	2	Mirror of Configuration Bits LSW
10	2	Mirror of Starting Speed MSW
11	2	Mirror of Starting Speed LSW
12	2	Mirror of Homing Timeout
13	2	Not used in Configuration Mode, will always be 16#0000
14	2	Not used in Configuration Mode, will always be 16#0000
15	2	Not used in Configuration Mode, will always be 16#0000

Table 6.5 Input Data Format - Configuration Mode

Global Status Bits

Word 0 contains Status Bits for Axis 1, Word 8 contains Status Bits for Axis 2

The upper three bits of each mirror of the *Configuration Bits MSW* words are used to report the status of the axis. These bits have same meaning regardless of the mode the axis is in. While in Configuration mode, they do not echo back the last values of these bits written to the 3102. The figure below shows meaning of each of these status bits.

Figure 6.1 Global Status Bits

Invalid Configurations

The following section lists the configuration settings that cause the Configuration Error bit of the axis to be set when an invalid configuration is written toit. I:X.0/13 is the Configuration Error bit for axis 1 and I:X.8/13 is the Configuration Error bit for axis 2, where "X" is the slot number of the 3102.

In the following tables, all bit places that do not show a value are "don't care" terms for that error.

Configuration Bits MSW

Word 0 configures Axis 1, Word 8 configures Axis 2

	If these bits are set as shown								as	shc	wn					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	a Configuration Error will result because:
		1	1													ANY of the reserved bits are set
Mode											1	1				Configuration tried to use an invalid setting for the CW/E-Stop Input.
uration									1	1						Configuration tried to use an invalid setting for the CCW/E-Stop Input.
Configu					0	1										Configuration tried to enable Diagnostic Feedback while the Output Pulse Type was not set to Step/Dir.
ien in (1	1									Configuration tried to simultaneously enable the Quadrature Encoder and Diagnostic Feedback
ys set wh				1			0									Configuration tried to request a <i>Home to Marker</i> <i>Pulse</i> setting without enabling the Quadrature Encoder.
s bit is alway				1			1	0					0			Configuration tried to request a <i>Home to Marker</i> <i>Pulse</i> setting without enabling the Home Input or Backplane Proximity bit. (Marker pulse homing requires one of the two for home proximity sensing.)
NOTE: Thi				1			1	1					1			Configuration tried to request a <i>Home to Marker</i> <i>Pulse</i> setting while enabling both the Home Input and the Backplane Proximity bit. (Marker pulse homing requires one and only one of the two for home proximity sensing.)

Table 6.6 Configuration Bits MSW Errors

Invalid Configurations (continued)

Configuration Bits LSW

Word 1 configures Axis 1, Word 9 configures Axis 2

	If these bits are set as shown									as	shc						
15	5 14	13	3	12	11	10	9	8	7	6	5	4	3	2	1	0	a Configuration Error will result because:
1	1	1		1	1	1	1	1	1	1	1						ANY of the reserved bits are set

Table 6.7 Configuration Bits LSW Errors

Starting Speed Parameter

The Starting Speed parameter must not be outside its range of 1 to 1,000,000. This means that a value of zero *will* cause an error. Because the value can be greater than sixteen bits in length, you must consider the values of both the MSW and LSW. Combined, then cannot exceed a hexadecimal value of 16#000F:4240.

Homing Timeout Parameter

This parameter must be in the range of 0 to 300 decimal, 16#0000 to 16#012C in hexadecimal.

Reserved Words

The three reserved words in the programming blocks for each axis must always be zero.

COMMAND MODE DATA FORMAT

Once properly configured, the 3102 can be placed in Command Mode. Moves can only be performed while in Command Mode. Output words are used to command the module, while the input words are used to report back the status of the module. As in Configuration Mode, the first eight of the sixteen I/O words are associated with axis 1, and the second eight words are associated with axis 2.

Multi-Word Parameters

Most of the values used to program the 3102, as well as values reported back to the PLC, can exceed $\pm 32,768$ counts. Therefore, they require two words of storage and they are transmitted as 32 bit values. The least significant word (LSW) contains the lower sixteen bits of the value and the most significant word (MSW) contains the remaining bits. When determining the values needed when programming the 3102, it is easiest to convert the parameter value to hexadecimal and enter these values into your data table. (The MicroLogix always shows 16 bit values in 2's-compliment notation. Sixteen bit values between 32,768 and 65,535 will appear as negative numbers when viewed as decimals.

Value (dec)	Value (hex)	MSW (hex)	MSW (dec)	LSW (hex)	LSW (dec)
50,800	16#0000:C670	16#0000	0	16#C670	-14,736
16,702,650	16#00FE:DCBA	16#00FE	254	16#DCBA	-9030
-16,702,650	16#FF01:2346	16#FF01	-255	16#2346	9,030

Table 7.1 Multi-word Data Format

Output Data Format

The following table shows the format of the output image table words when writing command data to both axes of the 3102.

Word O:X	Axis	Function
0	1	Command Bits MSW
1	1	Command Bits LSW
2	1	
3	1	Command Parameters
4	1	Woud a caning don ou da
5	1	on the command set
6	1	to the 3102
7	1	
8	2	Configuration Bits MSW
9	2	Configuration Bits LSW
10	2	
11	2	Command Parameters
12	2	
13	2	on the command set
14	2	to the 3102
15	2	

Table 7.2 Output Data Format - Command Data

Command Bits MSW

Word 0 configures Axis 1, Word 8 configures Axis 2

The Command Bits MSW is used to control the motion of the axis. Consequently, only one bit in the word can be on at a time. AMCI strongly suggests that you use MOV instructions when setting this word instead of bit instructions to set and reset the individual bits.

MSW value (hex)	# of bit set	Description
16#0001	0	Perform an ABSOLUTE MOVE
16#0002	1	Perform an RELATIVE MOVE
16#0004	2	Perform a HOLD MOVE operation
16#0008	3	Perform a RESUME MOVE operation
16#0010	4	Perform an IMMEDIATE STOP operation
16#0020	5	Perform a +FIND HOME (CW) operation
16#0040	6	Perform a -FIND HOME (CCW) operation
16#0080	7	Perform one of the following based on Command Parameter data: 1) +JOG MOVE (CW) 2) +REGISTRATION MOVE (CW) 3) +ENCODER FOLLOWER MOVE
16#0100	8	Perform one of the following based on Command Parameter data: 1) –JOG MOVE (CCW) 2) –REGISTRATION MOVE (CCW) 3) –ENCODER FOLLOWER MOVE
16#0200	9	PRESET the current position. This command can also be used to reset the <i>Move Complete</i> status bit.
16#0400	10	PRESET ENCODER current position
16#0800	11	RESET COMMAND ERRORS
16#1000	12	Run +BLEND MOVE PROFILE (CW)
16#2000	13	Run –BLEND MOVE PROFILE (CCW)

Table 7.3 Command Bits MSW

The remaining two bits of this word are bits 10, 14, and 15.

- **>** Bit 10: Reserved: This bit must always be zero.
- > Bit 14: Reserved: This bit must always be zero.
- **Bit 15: MODE CONTROL Bit:** A '0' places the 3102 in Command Mode.

A '1' places the 3102 in Configuration Mode.

Command Bits LSW

Word 1 configures Axis 1, Word 9 configures Axis 2

	Set These Bits To																
To Make The	ese Settings	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Constant		Die		9 through 15 are										0	0	
A applanation Trung	Constant		reserved and must													1	0
Acceleration Type	Triangular S														0	1	
	Trapezoidal S		equal zero.													1	1
Registration Move	To leave value as is														0		
Distance	To program value														1		
Encoder Follower	Disabled													0			
Mode	Enabled													1			
Program Blend	Disabled												0				
Move	Enabled												1				
Blend Move	Accept New Block											0→1					
Transmit	Acknowledge OK'd											1→0					
Backplane Home	Not Near Home										0						
Proximity	Near Home										1						
C.D. Quitaut Stata	OFF									0							
G.P. Output State	ON									1							

Table 7.4 Command Bits LSW

Command Bits Must Transition

Commands are only accepted when the command bit makes a $0 \rightarrow 1$ transition. The easiest way to do this is to use the MOV instruction to write a value of zero into the Command Bits MSW before writing the next command. Refer to the 3102 sample program on the www.amci.com website for an example.

Command Blocks

The following section lists the output data format for the fourteen different commands.

Absolute Move

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0001
1	9	Command Bits LSW		See pg. 49
2	10	Target Position MSW	<u>C</u> ($\pm 1,073,741,823$
3	11	Target Position LSW	Steps	(16#C000:001 to 16#3FFF:FFF)
4	12	Programmed Speed MSW	Stops/Second	Configured Starting Speed to
5	13	Programmed Speed LSW	Steps/Second	1,000,000 (16#000F:4240)
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.5 Absolute Move Command Block

Relative Move

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0002
1	9	Command Bits LSW		See pg. 49
2	10	Relative Position MSW	C.	$\pm 1,073,741,823$
3	11	Relative Position LSW	Steps	(16#C000:001 to 16#3FFF:FFF)
4	12	Programmed Speed MSW	Stong/Second	Configured Starting Speed to
5	13	Programmed Speed LSW	steps/second	1,000,000 (16#000F:4240)
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

 Table 7.6 Relative Move Command Block

Hold Move

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0004
1	9	Command Bits LSW		See pg. 49 and Note below
2	10	Unused		0 (See Note below)
3	11	Unused		0 (See Note below)
4	12	Unused		0 (See Note below)
5	13	Unused		0 (See Note below)
6	14	Unused		0 (See Note below)
7	15	Unused		0 (See Note below)

 Table 7.7 Hold Move Command Block

Unused words are ignored by the 3102 and can be any value, including parameter values in the previous Absolute or Relative Move command. The Command Bits LSW word can also be left at its previous value or the word can be set to 16#0000 to have the General Purpose Output off, or 16#0080 to have the General Purpose Output on.

Resume Move

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0008
1	9	Command Bits LSW		See pg. 49
2	10	Unused		0 (See Note below)
3	11	Unused		0 (See Note below)
4	12	Programmed Speed MSW	Stops/Second	Configured Starting Speed to
5	13	Programmed Speed LSW	steps/second	1,000,000 (16#000F:4240)
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

 Table 7.8 Resume Move Command Block

Unused words are ignored by the 3102 and can be any value, including parameter values in the previous Absolute or Relative Move command.

Immediate Stop

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0010
1	9	Command Bits LSW		See pg. 49 and Note below
2	10	Unused		0 (See Note below)
3	11	Unused		0 (See Note below)
4	12	Unused		0 (See Note below)
5	13	Unused		0 (See Note below)
6	14	Unused		0 (See Note below)
7	15	Unused		0 (See Note below)

Table 7.9 Immediate Stop Command Block

Unused words are ignored by the 3102 and can be any value, including parameter values in the previous Absolute or Relative Move command. The Command Bits LSW word can also be left at its previous value or the word can be set to 16#0000 to have the General Purpose Output off, or 16#0080 to have the General Purpose Output on.

+Find Home (CW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0020
1	9	Command Bits LSW		See pg. 49 and Note below
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Programmed Speed MSW	Stops/Second	Configured Starting Speed to
5	13	Programmed Speed LSW	Steps/Second	1,000,000 (16#000F:4240)
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.10 +Find Home (CW) Command Block

Only Constant Acceleration is available when homing the 3102 axis. Bit 0 of the Command Bits LSW must equal zero.

-Find Home (CCW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0040
1	9	Command Bits LSW		See pg. 49 and Note below
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Programmed Speed MSW	Stops/Second	Configured Starting Speed to
5	13	Programmed Speed LSW	Steps/Second	1,000,000 (16#000F:4240)
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.11 +Find Home (CW) Command Block

Only Constant Acceleration is available when homing the 3102 axis. Bit 0 of the Command Bits LSW must equal zero.

+Jog Move (CW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0080
1	9	Command Bits LSW		See pg. 49
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Programmed Speed MSW	Stops/Second	1 to 1,000,000
5	13	Programmed Speed LSW	Steps/Second	1 to 16#000F:4240
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.12 + Jog Move (CW) Command Block

+Registration Move (CW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0080
1	9	Command Bits LSW		See pg. 49
2	10	Position Offset MSW	Stops	1 to 1,073,741,823
3	11	Position Offset LSW	Steps	1 to 16#3FFF:FFFF
4	12	Programmed Speed MSW	Stops/Second	1 to 1,000,000
5	13	Programmed Speed LSW	steps/second	1 to 16#000F:4240
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.13 +Registration (CW) Command Block

+Encoder Follower Move

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0080
1	9	Command Bits LSW		16#0008 AND GPO state bit 16#0008 or 16#0088 allowed
2	10	Encoder Count Multiplier		1 to 32,767
3	11	Encoder Count Divisor		1 to 32,767
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Acceleration	Steps/ms/sec	0 to 2000
7	15	Deceleration	Steps/ms/sec	0 to 2000

 Table 7.14 +Encoder Follower Move Command Block

–Jog Move (CCW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0100
1	9	Command Bits LSW		See pg. 49
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Programmed Speed MSW	Stans/Second	1 to 1,000,000
5	13	Programmed Speed LSW	Steps/Second	1 to 16#000F:4240
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.15 – Jog Move (CCW) Command Block

-Registration Move (CCW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0100
1	9	Command Bits LSW		See pg. 49
2	10	Position Offset MSW	Stops	1 to 1,073,741,823
3	11	Position Offset LSW	Steps	1 to 16#3FFF:FFFF
4	12	Programmed Speed MSW	Stans/Sacond	1 to 1,000,000
5	13	Programmed Speed LSW	steps/second	1 to 16#000F:4240
6	14	Acceleration	Steps/ms/sec	1 to 2000
7	15	Deceleration	Steps/ms/sec	1 to 2000

Table 7.16 – Registration (CCW) Command Block

-Encoder Follower Move (CCW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0100
1	9	Command Bits LSW		16#0008 AND GPO state bit 16#0008 or 16#0088 allowed
2	10	Encoder Count Multiplier		1 to 32,767
3	11	Encoder Count Divisor		1 to 32,767
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Acceleration	Steps/ms/sec	0 to 2000
7	15	Deceleration	Steps/ms/sec	0 to 2000

Table 7.17 – Encoder Follower Move Command Block

Preset Position

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0200
1	9	Command Bits LSW		See pg. 49
2	10	New Position MSW	C.	±1,073,741,823
3	11	New Position LSW	Steps	(16#C000:001 to 16#3FFF:FFF)
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

 Table 7.18 Preset Position Command Block

Presetting the position will also reset the *Move Complete* status bit.

Preset Encoder Position

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0400
1	9	Command Bits LSW		See pg. 49
2	10	New Encoder Position MSW	C.	±1,073,741,823
3	11	New Encoder Position LSW	Steps	(16#C000:001 to 16#3FFF:FFF)
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

Table 7.19 Preset Encoder Position Command Block

Reset Errors

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0800
1	9	Command Bits LSW		16#0000 or 16#0080 Only bit 7 (GPO) may be set
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

Table 7.20 Reset Errors Command Block

Run +Blend Move Profile (CW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#1000
1	9	Command Bits LSW		16#0000 or 16#0080 Only bit 7 (GPO) may be set
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

 Table 7.21
 Run +Blend Move Profile (CW) Command Block

Run – Blend Move Profile (CCW)

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#2000
1	9	Command Bits LSW		16#0000 or 16#0080 Only bit 7 (GPO) may be set
2	10	Reserved		Must be 0
3	11	Reserved		Must be 0
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

Table 7.22 Run – Blend Move Profile (CW) Command Block

Set Min. Registration Move Distance

Axis 1 Word	Axis 2 Word	Function	Units	Range
0	8	Command Bits MSW		16#0000
1	9	Command Bits LSW		16#0004 AND GPO state bit 16#0004 or 16#0084 allowed
2	10	Min. Reg. Distance MSW	<u>C</u> tara	±1,073,741,823
3	11	Min. Reg. Distance LSW	Steps	(16#C000:001 to 16#3FFF:FFF)
4	12	Reserved		Must be 0
5	13	Reserved		Must be 0
6	14	Reserved		Must be 0
7	15	Reserved		Must be 0

Table 7.23 Set Min. Reg. Move Distance Command Block

Programming Blend Move Profiles

The previous *Run* +*Blend Move Profile (CW)* and *Run* –*Blend Move Profile (CCW)* sections show the word values needed to perform a Blend Move. This section covers how to program a Blend Move Profile. A Blend Move Profile must be programmed into the 3102 before a Blend Move can be executed.

Multiple writes to the 3102 are required to program a single Blend Move Profile. The 3102 uses a simple handshaking protocol to control this transfer of data. Two bits in the Output Image Table and two bits in the Input Image Table are used in the transfer of data blocks.

The two bits in the Output Image Table were introduced in the Command Bits LSW section on page 49.

- > Program Blend Profile (Bit 4 of Command Bits LSW) Must make a 0→1 transition to start the Blend Move Profile programming cycle and must remain a "1" while programming the Blend Move Profile.
- ➤ Program Blend Profile Transmit (Bit 5 of Command Bits LSW) Make a 0→1 transition on this bit to tell the 3102 that new Blend Move Profile data is available. Make a 1→0 transition on this bit after the 3102 sets its *Program Blend Profile Acknowledge* bit in its Input Image Table data to complete the transfer of the block of data.

The two bits in the Input Image Table are introduced here. The remaining values in the Input Image Table are introduced in the following section.

- ▶ Program Blend Profile Acknowledge (Bit 9 of Status Bits LSW) This bit is used by the 3102 to tell the PLC when it has accepted a new data block, and when it is ready to receive the next data block.
- ➤ Invalid Blend Profile (Bit 9 of Status Bits MSW) This bit is used by the 3102 to tell the PLC when there was an error in the last Program Blend Profile data block sent to the module.

The following logical steps are used to program a Blend Move Profile.

- 1) Your PLC program writes the *Initial Profile Programming Block* to the 3102 with the *Program Blend Profile Transmit* bits both set to 1.
- 2) The 3102 responds by storing the information in the data block, setting the *Invalid Blend Profile* bit if there is an error in the data, and setting the *Program Blend Profile Acknowledge* bit.
- 3) When your PLC program see the *Program Blend Profile Acknowledge* bit set, check the value of the *Invalid Blend Profile* bit and act appropriately.
- 4) Your PLC program then needs to reset the Program Blend Profile Transmit bit.
- 5) The 3102 responds by resetting its Program Blend Profile Acknowledge bit.
- 6) a: If you have additional data blocks that must be sent to the 3102, repeat these instructions from step 1.
 - b: If you have sent the last data block, then reset the *Program Blend Profile* bit to end the programming cycle.

NOTE ≽

Two sample programs for the 3102 are available on our www.amci.com website. One of them includes the sample code needed to program a Blend Move Profile.

Two different data blocks must be used when programming a Blend Move Profile. The first data block type programs the Number of Segments and the acceleration/deceleration types (Constant, Triangular S-Curve, Trapezoidal S-Curve), used between the segments. This must be the first data block written to the 3102 when programming a Blend Move Profile. The remaining data block type is used to program the Segment Length, the Target Speed, and the acculeration/deceleration value. This block is used multiple times in the programming cycle, once for each segment in the profile.

Programming Blend Move Profiles (continued)

Initial Profile Programming Block

Axis 1 Word	Axis 2 Word	Function	Units	Range			
0	8	Command Bits MSW		16#0000			
1	9	Command Bits LSW		16#0030 AND GPO state bit 16#0030 or 16#00B0 allowed			
2	10	Number of Segments		2 to 16			
3	11	Acceleration Type MSW	Programs Accel. Type for Segments 9 - 16				
4	12	Acceleration Type LSW	Programs Ac	ccel. Type for Segments 1 - 8			
5	13	Deceleration Value and Type	Programs final Deceleration Value and Type used at the end of the profile.				
6	14	Reserved		Must be 0			
7	15	Reserved		Must be 0			

Words 3/11 configures Segments 9 - 16, Words 4/12 configure Segments 1 - 8

		Set These Bits To															
To Make These Settings			14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Constant															0	0
Acceleration Type Segment 1 or 9	Triangular S															0	1
Segment 1 or y	Trapezoidal S															1	1
Segment 2 or 10. Same values as segment 1																	
Segment 3 or 11. Sar	me values as segment 1																
Segment 4 or 12. Sar	ne values as segment 1																
Segment 5 or 13. Sar	ne values as segment 1											ĺ					
Segment 6 or 14. Same values as segment 1																	
Segment 7 or 15. Same values as segment 1																	
Segment 8 or 16. Sar	ne values as segment 1																

Word 5 configures Axis 1, Word 13 configure Axis 2

							.Set	The	ese l	Bits	То						
To Make These Settings			14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Deceleration Value	Constant	0	0	0	0	0											
and Type:	Triangular S	0	1	0	0	0	Leceleration Value										
Final Segment	Trapezoidal S	1	1	0	0	0	1 to 2000										

Table 7.24 Initial Profile Programming Block

Programming Blend Move Profiles (continued)

Secondary Profile Programming Block

Axis 1 Word	Axis 2 Word	Function	Units	Range			
0	8	Command Bits MSW		16#0000			
1	9	Command Bits LSW		16#0030 AND GPO state bit 16#0030 or 16#00B0 allowed			
2	10	Segment Length MSW	Counts	1 to $(1,073,741,823 - 1)^{\dagger}$ [‡]			
3	11	Segment Length LSW	Counts	1 to 16#3FFF:FFFE			
4	12	Target Speed MSW	Counts/soc	1 to 1,000,000			
5	13	Target Speed LSW	Counts/sec	1 to 16#000F:4240			
6	14	Accel/Decel Value	Counts/ms/sec	1 to 2000			
7	15	Reserved		Must be 0			

† Combined length of all segments cannot exceed 1,073,741,823 counts

[‡] The Segment Length must be long enough to achieve the Target Speed at the programmed Accel/Decel Value.

Input Data Format

The format of the input image table words when both axes are in Command Mode is shown below.

Word I:X	Ch	Function	Units	Range				
0	1	Status Bits MSW		See Description below				
1	1	Status Bits LSW		See Description Below				
2	1	Current Position	Stens	-2,147,483,648 to 2,147,483,647				
3	1		Steps	(32 bit signed value)				
4	1	Current Encoder Position /	Counts	-2,147,483,648 to 2,147,483,647				
5	1	Diagnostic Feedback Value	Counts	(32 bit signed value)				
6	1	Capture Data	Steps or	-2,147,483,648 to 2,147,483,647				
7	1	Capture Data	Counts	(32 bit signed value)				
8	2	Status Bits MSW		See Description below				
9	2	Status Bits LSW		See Description below				
10	2	Current Position	Stens	-2,147,483,648 to 2,147,483,647				
11	2		Bieps	(32 bit signed value)				
12	2	Current Encoder Position /	Counts	-2,147,483,648 to 2,147,483,647				
13	2	Diagnostic Feedback Value	Counts	(32 bit signed value)				
14	2	Canture Data	Steps or	-2,147,483,648 to 2,147,483,647				
15	2	Capture Data	Counts	(32 bit signed value)				

Table 7.25 Input Data Format - Command Data

Status Bits MSW

Word 0 is for Axis 1, Word 8 is for Axis 2

- BIT 0: CW Motion: Set when the 3102 axis is outputting pulses for clockwise motion.
- BIT 1: CCW Motion: Set when the 3102 axis is outputting pulses for counter-clockwise motion.
- **BIT 2:** Hold State: Set when the 3102 axis has stopped motion as a result of a Hold Move Command. See page 50 for information on the *Hold Move* Command.
- **BIT 3:** Axis Stopped: Set when the 3102 axis is not in motion for any reason.
- **BIT 4:** At Home: This bit is only set after the successful completion of a homing command. The next command that causes motion will reset this bit. Any move off of the home position followed by any move back on to the home position will not result in this bit being set again. The Home Input State bit, found in the Status Bits LSW will always turn on when the Home Input is active.
- BIT 5: Move Accelerating: Set when the 3102 axis is accelerating during any move.
- BIT 6: Move Decelerating: Set when the 3102 axis is decelerating during any move.
- **BIT 7:** Move Complete: Set when the 3102 axis has successfully completed an Absolute, Relative, or Blend Move. This bit is reset by the next move command or by a Preset Position command.
- **BIT 8:** Home Invalid Error: Set when the 3102 could not home the axis because of an error in a ±Find Home command data, a hardware switch activated during the homing operation, or the homing operation exceeded its programmed timeout value.
- **BIT 9:** Invalid Profile: Set when there was an error in the last Program Blend Profile data block written to the 3102 axis. See the *Programming Blend Move Profiles* section starting on page 57 for information on the format of the data blocks.
- BIT 10: Position Invalid: Set under the following conditions:
 - 1) Axis switched from Configuration Mode to Command Mode
 - 2) An Immediate Stop command was issued to the axis while motion was occurring
 - 3) An Emergency Stop input was activated while motion was occurring.
 - 4) If either of the CW or CCW Limit inputs become active during a Relative, Absolute, or Blend Move.

BIT 11: Input Error:

 \pm *Find Home Commands:* Set when an E-Stop input activates during homing operation or when the limit switch that is opposite to the direction of travel activates, for example when the CCW Limit activates during a +Find Home command.

 $\pm Jog$ Move Commands: Set when an E-Stop input activates during the move or when the limit switch that is in the direction of travel activates, for example when the CW Limit activates during a +Jog Move command.

 \pm *Registration Move Commands:* Set when an E-Stop input activates during the move or when the limit switch that is in the direction of travel activates, for example when the CW Limit activates during a +Registration Move command.

All Other Move Commands: Set when an E-Stop input activates during the move or when either of the end limit switches activates.

Note that the Input Error bit is latched but you do not have to issue a Clear Errors command block to clear the bit. The next move command will clear this bit automatically if none of the inputs are active when the command is issued.

BIT 12: Command Error: Set when the last command issued to the 3102 axis forced an error. This bit must be reset by issuing a *Reset Errors* command to the 3102 axis. Other commands, including the *Immediate Stop* command, will not be accepted until this error is reset.

Global Status Bits

Word 0 is for Axis 1, Word 8 is for Axis 2

The upper three bits the Status Bits MSW have same meaning regardless of the mode the axis is in. The figure below shows meaning of each of these status bits.

Figure 7.1 Global Status Bits

Status Bits LSW

Word 1 is for Axis 1, Word 9 is for Axis 2

- **BIT 0:** Capture Input State: Set when the Capture Input is active. Its active state is set in the *Configuration Bits LSW* when the axis is configured. See page 43 for additional information.
- **BIT 1:** External Input State: Set when the External Input is active. Its active state is set in the *Configuration Bits LSW* when the axis is configured. See page 43 for additional information.
- **BIT 2:** Home Input State: Set when the Home Input is active. Its active state is set in the *Configuration Bits LSW* when the axis is configured. See page 43 for additional information.
- **BIT 3: CW Limit/Emergency Stop Input State:** Set when the CW Input/E-Stop Input is active. The function of this input is set in the *Configuration Bits MSW* when the axis is configured and its active state is set in the *Configuration Bits LSW*. See pages 42 and 43 for additional information.
- **BIT 4: CCW Limit/Emergency Stop Input State:** Set when the CCW Input/E-Stop Input is active. The function of this input is set in the *Configuration Bits MSW* when the axis is configured and its active state is set in the *Configuration Bits LSW*. See pages 42 and 43 for more information.
- BITS 5 & 6: Reserved: These bits will always equal zero.
- **BIT 7:** Encoder Follower Mode: Set when the axis is in Encoder Follower Mode.
- **BIT 8:** Running Blend Move: Set the axis is presently running a Blend Move Profile This bit is reset when the move comes to an end.
- **BIT 9:** Blend Move Acknowledge Bit: Set when 3102 has accepted a Blend Move Profile programming block. See *Programming Blend Move Profiles*, which starts on page 57, for additional information.
- **BIT 10: Non-Zero Minimum Registration Distance:** Set when the Minimum Registration Move Distance parameter is programmed to a non-zero value.
- BIT 11: Reserved: This bit will always equal zero.
- **BIT 12: Backplane Home Proximity Bit State:** This bit always equals the state of the Backplane Home Proximity bit, which is bit 6 in the *Command Bits LSW* for the axis.
- **BIT 13: General Purpose Output State:** This bit always equals the state of the G.P Output State bit, which is bit 7 in the *Command Bits LSW* for the axis.
- BITS 14 & 15: Reserved: These bits will always equal zero.

Current Position

Words 2 & 3 for Axis 1, Words 10 & 11 for Axis 2

These two words form a 32 bit value. This value can be though of as the motor position and it is affected by move commands to the axis. This value can be preset using the Preset Position command.

Encoder Position/Diagnostic Feedback Value

Words 4 & 5 for Axis 1, Words 12 & 13 for Axis 2

These two words form a 32 bit value. This value can be though of as the encoder position and it changes in response to pulses on the encoder inputs. This value can be preset using the Preset Encoder Position command.

When running in Diagnostic Feedback Mode, a Preset Position command will preset the motor's Current Position register pair as well as this register pair. (Both register pairs will have the same value after a Position Preset command.) The Preset Encoder Position command has no effect while in this Diagnostic Feedback Mode.

Capture Data

Words 6 & 7 for Axis 1, Words 14 & 15 for Axis 2

These two words form a 32 bit value. This value is updated when the Capture Input for the axis makes an inactive-to-active transition. (The active state of the Capture Input is configurable in the *Configuration Bits LSW*, as described on page 43.) If the axis has been configured to not use an encoder, then the Capture Data value will be taken from the Current Position value. If the axis is configured to use an encoder, then the Capture Data value will be taken from the Encoder Position value. The axis is configured to use, or not use, an encoder by the state of bit 8 of the *Configuration Bits MSW* as described on page 42.

CHAPTER 8

TABULATED COMMAND & ERROR CODES

This chapter is broken down into two sections. The first section lists status bits and the conditions that will set the bit. You can assume that the bit will be reset under all conditions that are not listed. The second section lists the available commands and the errors that can occur with them.

Status Bits

Axis Stopped

Axis1: I:X.0/3 Axis2: I:X.8/3

1) Set whenever the axis is in command mode and motion is not occurring.

Move Complete Bit

Axis1: I:X.0/7 Axis2: I:X.8/7

1) Set after an Absolute, Relative, or Blend Move has been successively completed. The Move Complete bit will be reset when the next move operation is initiated or by a Preset command. This bit is also reset when switching from Configuration Mode to Command Mode.

Home Invalid Bit

Axis1: I:X.0/8 Axis2: I:X.8/8

The Home Invalid bit will be set under the following conditions:

- 1) Issuing a ± Find Home command with the Programmed Speed less than the configured Starting Speed or greater than 1,000,000 steps/second.
- Issuing a ±Find Home command using either of the S-Curve Acceleration or Deceleration Types. (Only Constant Acceleration is available with ±Find Home commands.
- Issuing a ±Find Home command while having an acceleration or deceleration values outside their valid range of 1 to 2000.
- 4) Issuing a Homing Command with any reserved words not equal to zero.
- 5) If the opposite End Limit Switch is reached during a homing operation. For example, if the CCW Limit Switch is reached during a CW homing operation. Improper wiring, configuration, or placement of the limit switch would most likely cause this error.
- 6) If the CW Limit or CCW Limit activate at the same time as the Home Limit.
- 7) If the time of the homing operation exceeds the configured Homing Timeout value.

Invalid Profile Bit

Axis1: I:X.0/9 Axis2: I:X.8/9

The Invalid Profile bit will be set under the following conditions

- 1) If the Programmed Speed of a Relative, Absolute or Blend Move is less than the configured Starting Speed
- 2) If any of the move parameters are outside of their valid ranges.
- 3) If the defined profile overflows the internal registers of the 3102 module.
- 4) Setting the number of Blend Move Segments to be less than 2 or greater than 16.
- 5) If a Blend Move segment does not reach the Programmed Speed. That is, if the distance that it takes to accelerate to the programmed speed exceeds the length of the segment.
- 6) Two consecutive Blend Move segments with the same Programmed Speed.
- 7) Blend Move profile Initial Profile Programming Block that specifies an Acceleration Type of "10" in any of the bit pair in words 3,4 & 5 (axis1) or 11,12 & 13 (axis2)

Status Bits (continued)

Invalid Profile Bit (continued)

Axis1: I:X.0/9 Axis2: I:X.8/9

- Changing the speed of a ±Jog Move whose initial speed was less than or equal to the configured Starting Speed.
- If invalid changes are made to the velocity, acceleration, or deceleration parameters of a ±Jog Move while it is occurring. When detected, motion will immediately stop.
- 10)If a non-zero value is entered into the Reserved words (Axis1: 2/3, Axis2: 10/11), while a ±Jog Move is occurring. Motion will immediately stop.
- 11) If the Registration Move is started with the External Input active.
- 12) Starting a ±Registration Move if the number of steps programmed into the Position Offset register is less than the number of steps required to decelerate and stop the motion. In this case the ±Registration Move will not start.
- 13) If the Position Offset register of a \pm Registration Move are negative.
- 14) If the value of the Position Offset registers is changed after a ±Registration Move has been initiated. Motion will immediately stop.
- 15) Increasing the speed of a ±Registration Move while it is occurring. Motion will immediately stop. Please note that it is possible to decrease the speed of ±Registration Move while it is occurring.
- 16) Changing the acceleration or deceleration parameters during a ±Registration Move, however, these values are only checked when the Programmed Speed is changed. Motion will immediately stop.

Position Invalid Bit

Axis1: I:X.0/10 Axis2: I:X.8/10

The Position Invalid will be set under the following conditions

- 1) When switching from Configuration Mode to Command Mode. This will be true even if the position was valid before the configuration operation occurred.
- 2) After an Immediate Stop command has been issued.
- 3) If the Emergency Stop input has been activated.
- 4) If either of the CW Limit or CCW Limit inputs become active during a Relative, Absolute, Blend, or Encoder Follower Move.
- 5) If the limit input that is the same as the commanded direction of travel is reached during a Jog or Registration Move. For example, if the CW Limit Switch is reached during a +Jog Move.
- 6) If the limit input that is the opposite of the commanded direction of travel is reached during a homing operation. For example, if the CCW Limit Switch is reached during a +Find Home command.

Input Error Bit

Axis1: I:X.0/11 Axis2: I:X.8/11

The Input Error bit will be set under the following conditions

- 1) If an Emergency Stop input is activated.
- 2) If either of the CW Limit or CCW Limit inputs become active during a Relative, Absolute, Blend, or Encoder Follower Move.
- 3) If the limit input that is the same as the commanded direction of travel is reached during a Jog or Registration Move. For example, if the CW Limit Switch is reached during a +Jog Move.
- 4) If the limit input that is the opposite of the commanded direction of travel is reached during a homing operation. For example, if the CCW Limit Switch is reached during a +Find Home command.
- 5) Performing a ±Jog Move in the same direction as the active End Limit Switch. For example, starting a +Jog Move when the CW Limit Switch is active.

Status Bits (continued)

Command Error Bit

Axis1: I:X.0/12 Axis2: I:X.8/12

The Command Error bit will be set under the following conditions

- 1) Attempting to enter Configuration Mode while a move operation is occurring on the axis. The move will run to completion and the axis will then enter Configuration Mode, clearing the error.
- 2) If more than one bit in the Command Bits MSW is set at one time. (Axis1: O:X.0, Axis2: O:X.8)
- 3) If a move operation is started before the previous move operation is completed. The present move will run to completion.
- 4) If the Target Position, Programmed Speed, Acceleration, or Deceleration parameters are outside of their valid ranges.
- 5) If the Programmed Speed is less than the configured Starting Speed for Absolute, Relative, and Blend Moves as well as Find Home commands. Jog and Registration Moves can be run at speeds less than the starting speed.
- 6) Performing an Absolute Move when the Current Position is not valid.
- 7) Issuing a Hold Move command while a Blend, Registration, or Find Home command is running.
- 8) Issuing a Resume Move command when the axis is not in a Hold state.
- 9) Issuing any command with the Reserved words in the command having a non-zero value.
- 10) Issuing a Find Home command with S-Curve Acceleration selected.
- 11) Issuing a Find Home command before configuring a homing input. (Home Input or Z-pulse)

Configuration Error Bit

Axis1: I:X.0/13 Axis2: I:X.8/13

The Configuration Error bit will be set under the following conditions

- 1) At power up, before the 3102 has been configured for the first time.
- 2) If an invalid configuration has been written to the axis.

Command Error Conditions By Command

This section list the errors that will cause the Command Error bit to be set. The Command Error bit is I:X.0/13 for axis 1 and I:X.8/13 for axis 2.

±Jog Move Command

- 1) Changing the speed of a Jog Move whose initial speed was less than or equal to the configured Starting Speed.
- 2) If invalid changes are made to the velocity, acceleration, or deceleration parameters while the move is occurring. When detected, motion will immediately stop.
- 3) If a non-zero value is entered in the Reserved registers while a Jog Move is occurring. Motion will immediately stop. If a non-zero value is entered when starting a Jog Move, the 3102 axis will perform a Registration Move instead.

Command Error Conditions By Command (continued)

±Blend Move Command

- 1) If a Blend Move command is initiated before the profile was programmed for the axis.
- 2) Programming a Blend Move Profile without a final deceleration value. This parameter is programmed in word 5 of the Initial Profile Programming Block .
- 3) If a Blend Move command is sent to the axis with any of the Reserved words not set to zero.
- 4) If a blend move profile is programmed while a blend move operation is in progress. If this occurs, the final segments deceleration will be used to bring the move to a Controlled Stop.
- 5) If the Hold Move command is issued while a blend move profile is running. If this occurs, the command error bit will be set while the blend move profile runs to completion. When completed, the command error will be reset.

Registration Move Command

- 1) If the Minimum Registration Distance is outside of the valid range or is negative.
- 2) If the Hold Command bit is set while a Registration Move is occurring.
- 3) If the Registration Move is started with the External Input active.
- 4) If the number of steps programmed into the Position Offset registers during a Registration Move is less than the number of steps required to decelerate and stop the motion. In this case the motion will not start.
- 5) If the number of steps programmed into the Position Offset registers is negative.
- 6) If the value of the Position Offset registers is changed after a Registration Move has been initiated. Motion will immediately stop.
- 7) If the Registration Move speed is increased while motion is occurring. Motion will immediately stop. Please note that it is allowed to decrease the speed while a Registration Move is occurring.
- 8) Changing the acceleration or deceleration parameters. These values are only checked when the Programmed Speed is changed. Motion will immediately stop.

Encoder Follower Operations

- 1) If the 3102 axis is placed in Encoder Follower mode, without first configuring the axis to use an encoder.
- 2) Trying to place the axis in Encoder Follower mode while there is an active Move command running. Please note that even though the command error status bit will be set, the original move operation will run to completion. You can switch to Encoder Follower Mode while motion is occuring on the encoder inputs.
- 3) If the Multiplier or Divisor values are outside of the range of 1 to 32767.
- 4) If eiter Reserved words are not equal to zero.
- 5) Attempt to change the direction while there is motion on the axis. The Axis Stopped bit (Axis1: I:X.0/3, Axis2: I:X.8/3) must be set before the direction can be changed. You must also end the first Encoder Follower command by resetting the Command Bits MSW word to zero before issuing the Encoder Follower command that reverses direction.
- 6) If any command is issued, including the Hold Command, when the axis module is in Encoder Follower mode. That is, if any of the bits in the Command Bits MSW other than +Jog Move or –Jog Move bits are set when the Encoder Follower Bit is also set.
- 7) If the Encoder Follower Bit is reset while the ±Jog Move bits remain set during an Encoder Follower operation.
- 8) Selecting S curve acceleration with Encoder Follower mode.

Notes

LEADERS IN ADVANCED CONTROL PRODUCTS