Networked Stepper Indexer/Driver
with Integral 2-Port Ethernet Switch and Media Redundancy Protocol

SD17060A2
SD31045A2
General Information

Important User Information

The products and application data described in this manual are useful in a wide variety of different applications. Therefore, the user and others responsible for applying these products described herein are responsible for determining the acceptability for each application. While efforts have been made to provide accurate information within this manual, AMCI assumes no responsibility for the application or the completeness of the information contained herein.

UNDER NO CIRCUMSTANCES WILL ADVANCED MICRO CONTROLS, INC. BE RESPONSIBLE OR LIABLE FOR ANY DAMAGES OR LOSSES, INCLUDING INDIRECT OR CONSEQUENTIAL DAMAGES OR LOSSES, ARISING FROM THE USE OF ANY INFORMATION CONTAINED WITHIN THIS MANUAL, OR THE USE OF ANY PRODUCTS OR SERVICES REFERENCED HEREIN.

No patent liability is assumed by AMCI, with respect to use of information, circuits, equipment, or software described in this manual.

The information contained within this manual is subject to change without notice.

This manual is copyright 2017 by Advanced Micro Controls Inc. You may reproduce this manual, in whole or in part, for your personal use, provided that this copyright notice is included. You may distribute copies of this complete manual in electronic format provided that they are unaltered from the version posted by Advanced Micro Controls Inc. on our official website: www.amci.com. You may incorporate portions of this document in other literature for your own personal use provided that you include the notice “Portions of this document copyright 2017 by Advanced Micro Controls Inc.” You may not alter the contents of this document or charge a fee for reproducing or distributing it.

Standard Warranty

ADVANCED MICRO CONTROLS, INC. warrants that all equipment manufactured by it will be free from defects, under normal use, in materials and workmanship for a period of 18 months. Within this warranty period, AMCI shall, at its option, repair or replace, free of charge, any equipment covered by this warranty which is returned, shipping charges prepaid, within eighteen months from date of invoice, and which upon examination proves to be defective in material or workmanship and not caused by accident, misuse, neglect, alteration, improper installation or improper testing.

The provisions of the "STANDARD WARRANTY" are the sole obligations of AMCI and excludes all other warranties expressed or implied. In no event shall AMCI be liable for incidental or consequential damages or for delay in performance of this warranty.

Returns Policy

All equipment being returned to AMCI for repair or replacement, regardless of warranty status, must have a Return Merchandise Authorization number issued by AMCI. Call (860) 585-1254 with the model number and serial number (if applicable) along with a description of the problem during regular business hours, Monday through Friday, 8AM - 5PM Eastern. An "RMA" number will be issued. Equipment must be shipped to AMCI with transportation charges prepaid. Title and risk of loss or damage remains with the customer until shipment is received by AMCI.

24 Hour Technical Support Number

24 Hour technical support is available on this product. If you have internet access, start at www.amci.com. Product documentation and FAQ’s are available on the site that answer most common questions.

If you require additional technical support, call (860) 583-1254. Your call will be answered by the factory during regular business hours, Monday through Friday, 8AM - 5PM Eastern. During non-business hours an automated system will ask you to enter the telephone number you can be reached at. Please remember to include your area code. The system will page an engineer on call. Please have your product model number and a description of the problem ready before you call.

We Want Your Feedback

Manuals at AMCI are constantly evolving entities. Your questions and comments on this manual are both welcomed and necessary if this manual is to be improved. Please direct all comments to: Technical Documentation, AMCI, 20 Gear Drive, Terryville CT 06786, or fax us at (860) 584-1973. You can also e-mail your questions and comments to techsupport@amci.com
Table of Contents

General Information
- Important User Information 2
- Standard Warranty 2
- Returns Policy 2
- 24 Hour Technical Support Number 2
- We Want Your Feedback 2

About this Manual
- Audience ... 7
- Applicable Units 7
- Navigating this Manual 7
- Manual Conventions 8
- Trademarks and Other Legal Stuff 8
- Revision Record 8
- Revision History 8
- Manual Layout 9

Reference 1: SD17060A2 & SD31045A2

Specifications
- Networked Stepper Indexer/Drivers 11
- Indexer Functionality 12
- Driver Functionality 13
 - Idle Current Reduction 13
 - Current Loop Gain 13
- Available Inputs 14
 - Home Input 14
 - CW Limit Switch or CCW Limit Switch 14
 - Start Indexer Move Input 14
 - Emergency Stop Input 14
 - Stop Jog or Registration Move Input 14
 - Capture Encoder Position Input 14
 - Encoder Feedback 15
 - General Purpose Input 15
- Encoder Functionality 15
 - Encoder Registration Move 15
 - Electronic Gearing 15
 - Stall Detection 15
 - Hybrid Control 16
- Network Interface Description 17
 - PROFINET Interface 17
- Specifications 18
 - Front Panel Status LED’s 19
 - PROFINET Status LED’s 19

Reference 2: UL/cUL Recognized Installations

Reference 3: Motion Control

Units of Measure 23
Definition of Count Direction 23
Definition of Home Position 23
Definition of Starting Speed 23
Definition of Target Position 24
- Relative Coordinates 24
- Absolute Coordinates 24
Definition of Acceleration Types 24
- Linear Acceleration 24
- Triangular S-Curve Acceleration 25
- Trapezoidal S-Curve Acceleration 25
A Simple Move 26
Controlled and Immediate Stops 27
- Host Control 27
- Hardware Control 27
Basic Move Types 27
- Relative Move 27
- Absolute Move 28
- CW/CCW Jog Move 29
- CW/CCW Registration Move 31
- Encoder Registration Move 32
Assembled Moves 33
- Blend Move .. 34
- Dwell Move .. 35
Assembled Move Programming 37
- Control Bits – Output Data 37
- Control Bits – Input Data 37
- Programming Routine 37
Saving an Assembled Move in Flash 37
Indexed Moves 38
Controlling Moves In Progress 39
- Find Home Moves 39
- Jog Moves .. 39
- Registration Moves 39
- Absolute, Relative, and Encoder Registration Moves 39
- Assembled Moves 39
Table of Contents

Reference 3: Motion Control (continued)
- Electronic Gearing .. 40
- Motor Resolution ... 40
- EL Gear Multiplier and Divider 40
- How It Works .. 40
- Controlled Stop Conditions 40
- Immediate Stop Conditions 40
- Advanced Ratio Control .. 41

Reference 4: Homing an AMCI Networked Driver
- Definition of Home Position 43
- Position Preset .. 43
- CW/CCW Find Home Commands 43
- Homing Inputs .. 43
 - Physical Inputs .. 43
 - Backplane Inputs .. 43
- Homing Configurations ... 44
- Homing Profiles ... 44
 - Home Input Only Profile 44
 - Profile with Network 44
 - Backplane_Proximity_Bit 45
 - Profile with Overtravel Limit 46

Reference 5: Configuration Mode Data Format
- Modes of Operation ... 47
 - Configuration Mode ... 47
 - Command Mode ... 47
- Multi-Word Format ... 47
- Output Data Format .. 48
 - Configuration Word 0 Format 48
 - Configuration Word 1 Format 50
 - Notes on Starting Speed 51
 - Notes on Hybrid Control Gain 51
 - Notes on Idle Current Reduction 51
 - Notes on Current Loop Gain 52
- Input Data Format ... 53
 - Configuration Word 0 Format 53
 - Invalid Configurations .. 53

Reference 6: Command Mode Data Format (continued)
- Output Data Format ... 56
- Command Word 0 ... 56
- Command Word 1 ... 58
 - Description of Motor Current Keys 59
- Command Blocks ... 60
 - Absolute Move ... 60
 - Relative Move ... 60
 - Hold Move .. 61
 - Resume Move .. 61
 - Immediate Stop .. 62
 - Find Home CW ... 62
 - Registration Move CW 64
 - Jog CW .. 63
 - Find Home CCW .. 63
 - Registration Move CCW 65
 - Jog CCW .. 64
 - Encoder Follower Move 65
 - Profile with Overtravel Limit 46
- Input Data Format ... 53
 - Configuration Word 0 Format 53
- Notes on Clearing a Driver Fault 73
- Notes on Starting Speed 51
- Notes on Hybrid Control Gain 51
- Notes on Idle Current Reduction 51
- Notes on Current Loop Gain 52
- Input Data Format ... 53
 - Configuration Word 0 Format 53
 - Invalid Configurations .. 53

Reference 6: Command Mode Data Format
- Multi-Word Format ... 55
- Command Bits Must Transition 56

Reference 7: General Installation Guidelines
- Grounding .. 75
 - Grounding Electrode System 75
 - Ground Bus .. 75
 - Grounding Electrode Conductor 76
 - Grounding Wires .. 76
- Avoiding Grounding Problems 76
- Surge (EMI) Suppression 77
 - Incoming Power ... 77
 - Inductive Loads .. 78
 - System Environment ... 78
Table of Contents

Reference 7: General Installation Guidelines (continued)
- System Layout Considerations 78
- Wiring Categories for the SD17060A2 or SD31045A2 78
- Minimize Voltages in the System Enclosure 79
- Power Supply Sizing 79
- Component Placement 79
- Conduits to Enclosure 80
- Installing an AMCI Networked Driver 80

Task 1: Installing an AMCI Networked Driver
- Location 81
- Safe Handling Guidelines 81
- Prevent Electrostatic Damage 81
- Prevent Debris From Entering the Unit 81
- Remove Power Before Servicing in a Hazardous Environment 81
- Airflow and Wiring Space 81
- Outline Drawings 82
 - SD17060A2 Outline Drawing 82
 - SD31045A2 Outline Drawing 83
- Mounting Methods 83
- Grounding and Powering the System 84
- Installing the Stepper Motor 85
 - Outline Drawings 85
- Mounting the Motor 85
- Connecting the Load 85
- Extending the Motor Cable 85
- Installing the Motor Cable 85
- Connecting the Motor 86
- Motor Connector 86
- Interlock Wiring 86
- Motor Wiring 87

Task 1: Installing an AMCI Networked Driver (continued)
- I/O Wiring 88
- Input Wiring 88
- Output Wiring 89
- Encoder Wiring 89
- PROFINET Connections 90
- Non-MRP Applications 90
- MRP Applications 90
- Network Status LED’s 90

Task 2: PROFINET Network Configuration
- Basic Steps 91
- Download the GSDML files 91
- GSDML File Installation 91
- Configure the PROFINET Network ... 92
- Add the SD17060A2/SD31045A2 to the PROFINET Network 92
- Set the I/O Configuration 93
- Verify and Download the New Configuration 94
- Update Networked Driver’s IP Information 95

Optional Task A: MRP Configuration
- Configure the Networked Driver as an MRC 97
- Verify Network with the Topology Editor 99

Optional Task A:
- **Configure Your Network Interfaces**
 - Firewall Settings 101
 - Configure Your Network Interface 101
 - Test Your Network Interface 102

Reference 8: Calculating Move Profiles
- Constant Acceleration Equations 103
- Variable Definitions 103
- Total Time Equations 105
- S-Curve Acceleration Equations 106
- Triangular S-Curve Acceleration 106
- Trapezoidal S-Curve Acceleration 108
- Determining Waveforms by Values 110
Notes
Table of Contents
ABOUT THIS MANUAL

Read this chapter to learn how to navigate through this manual and familiarize yourself with the conventions used in it. The last section of this chapter highlights the manual's remaining chapters and their target audience.

Audience
This manual explains the installation and operation of AMCI’s Networked Stepper Indexer/Drivers. It is written for the engineer responsible for incorporating these products into a design as well as the engineer or technician responsible for their actual installation.

Applicable Units
This manual is applicable to the following AMCI part numbers:

- SD17060A2: 115Vac Input, 6.0 Arms, Stepper Indexer/Driver with PROFINET MRP interface.
- SD31045A2: 230Vac Input, 4.5 Arms, Stepper Indexer/Driver with PROFINET MRP interface.

With the exception of power requirements and output current, the information in this manual applies to both units. The term “Networked Driver” is used when the information applies to both drivers.

Navigating this Manual
This manual is designed to be used in both printed and on-line forms. Its on-line form is a PDF document, which requires Adobe Acrobat Reader version 7.0+ to open it. You are allowed to select and copy sections for use in other documents and, if you own Adobe Acrobat version 7.0 or later, you are allowed to add notes and annotations. If you decide to print out this manual, all sections contain an even number of pages which allows you to easily print out a single chapter on a duplex (two-sided) printer.
Manual Conventions

Three icons are used to highlight important information in the manual:

- **NOTES** highlight important concepts, decisions you must make, or the implications of those decisions.
- **CAUTION** tell you when equipment may be damaged if the procedure is not followed properly.
- **WARNING** tell you when people may be hurt or equipment may be damaged if the procedure is not followed properly.

The following table shows the text formatting conventions:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Font</td>
<td>Font used throughout this manual.</td>
</tr>
<tr>
<td>Emphasis Font</td>
<td>Font used for parameter names and the first time a new term is introduced.</td>
</tr>
<tr>
<td>Cross Reference</td>
<td>When viewing the PDF version of the manual, clicking on a blue cross reference jumps you to referenced section of the manual.</td>
</tr>
<tr>
<td>HTML Reference</td>
<td>When viewing the PDF version of the manual, clicking on a red cross reference opens your default web browser to the referenced section of the AMCI website if you have Internet access.</td>
</tr>
</tbody>
</table>

Trademarks and Other Legal Stuff

The AMCI logo is a trademark of Advanced Micro Controls Inc. “PROFINET” is a registered trademark of PROFIBUS & PROFINET International (PI). “Adobe” and “Acrobat” are registered trademarks of Adobe Systems Incorporated.

All other trademarks contained herein are the property of their respective holders.

Revision Record

This manual, 940-0S200 is the first release of this manual. It was first released on November 1st, 2017.

Revision History

940-0S200: November 1, 2017 - Initial Release
Manual Layout

You will most likely read this manual for one of two reasons:

- If you are curious about the Networked Stepper Indexer/Driver products from AMCI, this manual contains the information you need to determine if these products are the right products for your application. The first chapter, *SD17060A2 & SD31045A2 Specifications* contains all of the information you will need to fully specify the right product for your application.

- If you need to install and use a Networked Stepper Indexer/Driver product from AMCI, then the rest of the manual is written for you. To simplify installation and configuration, the rest of the manual is broken down into tasks and references. Using a Networked Stepper Indexer/Driver requires you to complete multiple tasks, and the manual is broken down into sections that explain how to complete each one.

<table>
<thead>
<tr>
<th>Section Title</th>
<th>Section Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD17060A2 & SD31045A2 Specifications</td>
<td>Complete specifications for the SD17060A2 and SD31045A2 products.</td>
</tr>
<tr>
<td>UL/cUL Recognized Installations</td>
<td>Installation and environmental guidelines that must be followed in order for the installation of the SD17060A2 or SD31045A2 to meet UL/cUL criterion.</td>
</tr>
<tr>
<td>Motion Control</td>
<td>Reference information on how the driver can be used to control motion in your application.</td>
</tr>
<tr>
<td>Homing an AMCI Networked Driver</td>
<td>Reference information on how the home position of the SD17060A2 or SD31045A2 can be set.</td>
</tr>
<tr>
<td>Configuration Mode Data Format</td>
<td>Reference information on the format of the network data to and from the SD17060A2 or SD31045A2 that is used to configure it.</td>
</tr>
<tr>
<td>Command Mode Data Format</td>
<td>Reference information on the format of the network data to and from the SD17060A2 or SD31045A2 that is used to command it.</td>
</tr>
<tr>
<td>General Installation Guidelines</td>
<td>Reference information on grounding, wiring, and surge suppression, that is applicable to any control system installation.</td>
</tr>
<tr>
<td>Installing an AMCI Networked Driver</td>
<td>Task instructions covering how to install an SD17060A2 or SD31045A2 on a machine. Includes information on mounting, grounding, and wiring specific to the units.</td>
</tr>
<tr>
<td>PROFINET Network Configuration</td>
<td>Task instructions that covers how to add a Networked Driver to a PROFINET network.</td>
</tr>
<tr>
<td>Optional: MRP Configuration</td>
<td>Instructions for the optional task of configuring the Networked Driver to function in a MRP ring-based network.</td>
</tr>
<tr>
<td>Optional: Configure Your Network Interfaces</td>
<td>Instructions for the optional task of configuring network interfaces on your computer or laptop.</td>
</tr>
<tr>
<td>Calculating Move Profiles</td>
<td>Reference information on calculating detailed move profiles.</td>
</tr>
</tbody>
</table>
This manual is designed to get you up and running quickly with either the SD17060A2 or the SD31045A2 from AMCI. As such, it assumes you have some basic knowledge of stepper systems, such as the resolution you want run your motor at, and the reasons why you’d want to use Idle Current Reduction and the reasons why you wouldn’t. If these terms or ideas are new to you, we’re here to help. AMCI has a great deal of information on our website and we are adding more all the time. If you can’t find what you’re looking for at http://www.amci.com, send us an e-mail or call us. We’re here to support you with all of our knowledge and experience.

Networked Stepper Indexer/Drivers

The AMCI SD17060A2 is a 6.0Arms micro-stepping driver with a 170Vdc internal bus voltage. The AMCI SD31045A2 is a 4.4Arms micro-stepping driver with a maximum internal bus voltage of 310Vdc. What makes each drive unique is its built-in indexer that accepts configuration and command data from a host system over the internal Ethernet port. The SD17060A2 and SD31045A2 drivers communicate using the PROFINET protocol, which makes these units easy to integrate into a wide variety of controller systems. This combination of host and driver gives you several advantages:

- Sophisticated I/O processing can be performed in the host (PLC or other controller) before sending commands to the Networked Indexer/Driver.
- All motion logic is programmed in the host, eliminating the need to learn a separate motion control language
- Eliminating the separate indexer lowers Total System Cost

Both Networked Drivers can be powered from a nominal 115 Vac, 50/60 Hz source and they will have a 170 Vdc motor bus voltage with this input supply. The SD31045A2 Drivers can also be powered by a nominal 230 Vac 50/60 Hz source and they will have a 310 Vdc motor bus voltage with this input supply.

The output motor current is fully programmable on these Networked Drivers. The SD17060A2 Drivers can be programmed from 1.0 Arms to 6.0 Arms, while the SD31045A2 Drivers can be programmed from 1.0 Arms to 4.4 Arms. It is even possible to change the motor current setting while the move is in progress. These ranges of output currents makes the Networked Drivers compatible with the complete line of stepper motors from AMCI.

In addition to the Motor Current setting, the Motor Steps per Turn, Idle Current Reduction, and Anti-Resonance Circuit features are also fully programmable. If you have used other stepper indexer products from AMCI you will find the programming to be very similar to these products.

All Networked Drivers from AMCI are true RMS motor current control drivers. This means that you will always receive the motor’s rated torque regardless of the Motor Resolution setting. (Drivers that control the peak current to the motor experience a 30% decrease in motor torque when microstepping a motor.) The Networked Drivers automatically switch from RMS to peak current control when the motor is idle to prevent overheating the motor.

In addition to power and motor hookups, the Networked Drivers have three DC inputs and one DC output that are used by the indexer. Configuration data from the host sets the function of these points. The output can be configured to be a Fault Output or a general purpose output. Each input can be individually configured as a:

- CW or CCW Limit Switch
- Home Limit Switch
- Capture Encoder Position Input
- Stop Jog or Registration Move Input
- Start Indexer Move
- Emergency Stop Input
- General Purpose Input
Indexer Functionality

The table below lists the functionality offered by the indexer built into the AMCI Networked Drivers.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFINET Protocol</td>
<td>Drivers that use the PROFINET protocol have two ethernet ports that are connected through an onboard two port switch. These devices support Media Redundancy Protocol (MRP) in redundant environments. This allows easy setup and communication with a wide range of host controllers.</td>
</tr>
<tr>
<td>Programmable Inputs</td>
<td>Each of the three inputs can be programmed as a Home Limit, Over Travel Limit, Capture Input, Jog Stop, or E-Stop Input. They can also be programmed to accept a quadrature encoder.</td>
</tr>
<tr>
<td>Programmable Output</td>
<td>The single output on the Networked Driver can be programmed as a Fault Output or as a general purpose DC output point.</td>
</tr>
<tr>
<td>Programmable Parameters</td>
<td>Starting Speed, Running Speed, Acceleration, Deceleration, and Accel/Decel Types are fully programmable.</td>
</tr>
<tr>
<td>Homing</td>
<td>Allows you to set the machine to a known position. The Networked Driver can home to a discrete input or to an encoder marker pulse.</td>
</tr>
<tr>
<td>Jog Move</td>
<td>Allows you to jog the motor in either direction based on a bit from your controller.</td>
</tr>
<tr>
<td>Registration Move</td>
<td>Allows you to jog the motor in either direction based on a command bit from your controller. When a controlled stop is issued, the move will output a programmable number of steps before coming to a stop.</td>
</tr>
<tr>
<td>Encoder Registration Move</td>
<td>Uses the count from a quadrature encoder to determine when a move begins to decelerate and stop. Commonly used in spooling/despooling applications.</td>
</tr>
<tr>
<td>Relative Move</td>
<td>Allows you to drive the motor a specific number of steps in either direction from the current location.</td>
</tr>
<tr>
<td>Absolute Move</td>
<td>Allows you to drive the motor from one known location to another known location.</td>
</tr>
<tr>
<td>Assembled Move</td>
<td>Allows you to perform a sequence of relative moves. These moves can be performed with or without stopping between them.</td>
</tr>
<tr>
<td>Indexer Move</td>
<td>Allows you to program a move that is run when one of the programmable inputs makes a transition.</td>
</tr>
<tr>
<td>Hold Move</td>
<td>Allows you to suspend a move and restart it without losing your position value.</td>
</tr>
<tr>
<td>Resume Move</td>
<td>Allows you to restart a previously held move operation.</td>
</tr>
<tr>
<td>Immediate Stop</td>
<td>Allows you to immediately stop all motion if an error condition is detected by your host controller.</td>
</tr>
<tr>
<td>Stall Detection</td>
<td>When the Networked Driver is configured to accept an encoder, the encoder can be used to verify motion when a move command is issued.</td>
</tr>
<tr>
<td>Electronic Gearing</td>
<td>The Networked Driver can be configured to control the position of a motor based on feedback from an external encoder. The ratio of encoder pulses to motor pulses is full programmable and can be changed on-the-fly.</td>
</tr>
<tr>
<td>Hybrid Control</td>
<td>The Networked Driver can be configured to use a motor mounted encoder for rotor position feedback and use this data to dynamically alter motor current to the minimum value needed to achieve motion. This operating mode eliminates the possibility of resonance induced motor stalls and can significantly reduce the operating temperature of the motor.</td>
</tr>
</tbody>
</table>

Table R1.1 Indexer Functionality
Driver Functionality

This table summarizes the features of the stepper motor driver portion of the SD17060A2 and SD31045A2.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 Vdc or 310 Vdc Output Bus</td>
<td>A high voltage output bus means you can derive more high speed torque (power) from your stepper motor.</td>
</tr>
<tr>
<td>RMS Current Control</td>
<td>RMS current control give the Networked Driver the ability to drive the motor at its fully rated power when microstepping. Peak current controllers typically experience a 30% drop in power when microstepping a motor.</td>
</tr>
<tr>
<td>Programmable Motor Current</td>
<td>RMS current supplied to the motor can be programmed in 0.2 amp increments. This allows you to use a Networked Driver with the full line of AMCI stepper motors.</td>
</tr>
<tr>
<td>Programmable Idle Current Reduction</td>
<td>Extends motor life by reducing the motor current when not running. This extends the life of the motor by reducing its operating temperature.</td>
</tr>
<tr>
<td>Programmable Current Loop Gain</td>
<td>Allows you to tailor the driver circuitry to the motor’s impedances, thereby maximizing your motor’s performance.</td>
</tr>
<tr>
<td>Programmable Motor Steps/Turn</td>
<td>Allows you to scale your motor count to a real world value. (counts per inch, counts per degree, etc.)</td>
</tr>
<tr>
<td>Anti-Resonance Circuitry</td>
<td>This circuitry gives the Networked Driver the ability to modify motor current waveforms to compensate for mechanical resonance in your system. This will give you smooth performance over the entire speed range of the motor.</td>
</tr>
<tr>
<td>Motor Interlock</td>
<td>Safety feature that prevents power from being applied to the motor connector if a wire jumper does not exist between two of its pins. A mechanical contact can be used to disable the current to the motor. The voltage between the two interlock pins never exceeds 5Vdc, but 115/230Vac may be present between either of the Interlock pins and either of the power supply inputs.</td>
</tr>
<tr>
<td>Wiring Short Detection</td>
<td>Safety feature that removes power from the motor if a short is detected in one of the windings of the motor.</td>
</tr>
<tr>
<td>Over Temperature Detection</td>
<td>Protects the Networked Driver from damage by removing power from the motor if the internal temperature of the driver exceed a safe operating threshold.</td>
</tr>
</tbody>
</table>

Table R1.2 Driver Functionality

Idle Current Reduction

Idle Current Reduction allows you to prolong the life of your motor by reducing its idling temperature. Values for this parameter range from 0% (no holding torque when idle) to 100%.

Idle current reduction should be used whenever possible. By reducing the current, you are reducing the I^2R losses in the motor. Therefore, the temperature drop in the motor is exponential, not linear. This means that even a small reduction in the idle current can have a large effect on the temperature of the motor.

Note that the reduction values are “to” values, not “by” values. Setting a motor current to 4Arms and the current reduction to 25% will result in an idle current of 1Apk. (The Networked Driver always switches from RMS to peak current control when the motor is idle to prevent motor damage due to excessive heating.)

Current Loop Gain

This feature gives you the ability to adjust the gain of the power amplifiers in the Networked Driver to match the electrical characteristics of your motor. The value of this parameter can range from 1 to 40 with 40 representing the largest gain increase. In general, using a larger gain will increase high speed torque but the motor will run louder. A lower gain will offer quieter low speed operation at the cost of some high speed torque.

Tables that show the gain settings for all AMCI motors is available in the *Configuration Mode Data Format* section of this manual starting on page 52.
Available Inputs

Each Networked Driver has three DC inputs that accept 3.5 to 27Vdc signals. (5 to 24Vdc nominal) They can be wired as differential, sinking, or sourcing inputs. How the Networked Driver uses these inputs is fully programmable as well as their active states. (Each input can be programmed to act as a Normally Open (NO) or Normally Closed (NC) input.)

Home Input

Many applications require that the machine be brought to a known position before normal operation can begin. This is commonly called “homing” the machine or bringing the machine to its “home” position. Each Networked Driver allows you to define this starting position in two ways. The first is with a Position Preset Command. The second is with a sensor mounted on the machine. When you define one of the inputs as the Home Input, you can issue commands to the Networked Driver that will cause the unit to seek this sensor. How the Networked Driver actually finds the home sensor is described in the reference chapter Homing an AMCI Networked Driver starting on page 43.

CW Limit Switch or CCW Limit Switch

Each input can be defined as a CW or CCW Limit Switch. When used this way, the inputs are used to define the limits of mechanical travel. For example, if you are moving in a clockwise direction and the CW Limit Switch activates, all motion will immediately stop. At this point, you will only be able to move in the counter-clockwise direction.

Start Indexer Move Input

Indexer Moves are programmed through the Network Data like every other move. The only difference is that Indexer Moves are not run until a Start Indexer Move Input makes an inactive-to-active state transition. This allows a Networked Driver to run critically timed moves that cannot be reliably started from the network due to data transfer lags.

If Inputs 1 and 2 are programmed as quadrature encoder inputs and Input 3 is programmed as a Start Indexer Move Input, then the quadrature encoder position data will be captured whenever Input 3 transitions. An inactive-to-active state transition will also trigger an Indexer Move if one is pending.

Emergency Stop Input

When an input is defined as an Emergency Stop, or E-Stop Input, motion will immediately stop when this input becomes active. The driver remains enabled and power is supplied to the motor. No move can begin while this input is active.

Stop Jog or Registration Move Input

When an input is configured as a Stop Jog or Registration Move Input, triggering this input during a Jog Move or Registration will bring the move to a controlled stop. The controlled stop is triggered on an inactive-to-active state change on the input. Only Jog Moves and Registration Moves can be stopped with this input type, all other moves will ignore this input.

If Inputs 1 and 2 are programmed as quadrature encoder inputs and Input 3 is programmed as a Stop Jog or Registration Move Input, then the quadrature encoder position data will be captured when Input 3 makes an inactive-to-active transition to bring a Jog or Registration Move to a controlled stop. The encoder position data is not captured if a Jog or Registration Move is not in progress. If you want to capture encoder position data on every transition of Input 3, configure it as a Start Indexer Move Input.

Capture Encoder Position Input

As described in the Start Indexer Move Input and Stop Jog or Registration Move Input sections above, a Networked Driver can be configured to capture the encoder position value on a transition on Input 3.
Available Inputs (continued)

Encoder Feedback
Each Networked Driver can be configured to accept a quadrature encoder instead of discrete inputs. Inputs 1 and 2 can be programmed to accept the ±A and ±B signals from a quadrature encoder. When using an encoder, you have two additional choices when configuring Input 3. First, the ±Z signal can be wired to Input 3 and used to home the machine. Second, Input 3 can be used to capture the encoder position when it transitions if it is programmed as a Capture Encoder Position Input or a Jog Move Stop Input.

Additional information on the ways to use an encoder with a Networked Driver is described in the Encoder Functionality section on page 15.

General Purpose Input
If your application does not require all three inputs, you can configure the unused inputs as General Purpose Inputs. The inputs are not used by the Networked Driver, but the input state is reported in the network data.

Encoder Functionality
Inputs 1 and 2 can be programmed to accept the ±A and ±B signals from a quadrature encoder. When using an encoder, you have two additional choices when configuring Input 3. First, the ±Z signal can be wired to Input 3 and used to home the machine. Second, Input 3 can be used to capture the encoder position when it transitions if it is programmed as a Capture Encoder Position Input or a Jog Move Stop Input.

Using an encoder input gives you the ability to:
- Home the machine to the encoder marker pulse
- Detect motor stall conditions
- Run Encoder Registration Moves
- Enable Hybrid Control on the motor

Encoder Registration Move
The encoder position acts as a registration mark in an Encoder Registration Move. Typically, the encoder is mounted separately from the motor. With this mode, the Networked Driver will drive the motor until the desired encoder count is reached, at which time the motor begins to decelerate and stop. This functionality is useful in spool winding or unwinding applications, where the motor drives the spool and the encoder measures the material length as it enters or exits the spool. As the spool diameter increases or decreases, the programmed distance remains the same because you are measuring material, not the number of turns.

Electronic Gearing
In this mode, the stepper motor follows the rotation of an external encoder. This encoder is typically attached to another motor. The ratio of encoder pulses to stepper pulses is programmable over a wide range. This mode electronically couples the two motors together through a programmable gear ratio.

Stall Detection
Another feature available when using an encoder is stall detection. The encoder must be mounted on the motor controlled by the Networked Driver, which means that you cannot use Stall Detection when using the Electronic Gearing feature. When Stall Detection is enabled, the Networked Driver monitors the encoder inputs for changes while a move is in progress. If the encoder inputs do not change as expected, the move stops and an error bit is reported to your host controller.

In order for the Stall Detection to work correctly, you must program the Encoder Resolution parameter to its correct value in the Configuration Data of the Networked Driver. The Networked Driver always uses X4 decoding when determining the encoder position value, so the Encoder Resolution parameter must be set to four times the number of encoder lines. (When using a 1,024 line encoder, the Encoder Resolution parameter must equal 4,096 for stall detection to work correctly.)
Encoder Functionality (continued)

Hybrid Control

When enabled, this feature gives you servo-like performance without the need to tune servo PID loop parameters. When Hybrid Control is enabled, the Networked Driver uses a motor mounted encoder to feed rotor position information back to the driver. The Networked Driver uses this information during a move to dynamically increase or decrease the current through the motor’s windings to the lowest values needed to achieve motion. This feature eliminates the possibility of resonance related motor stalls. This feature can also dramatically lower the motor’s operating temperature, which will prolong the motor’s life.

Like a servo system, there is the possibility of a load induced error in the final position and/or a one count dither in position at zero speed if this feature is always enabled. The “stiffness” of the shaft, (how quickly the system compensates for shaft position error), can be adjusted with a single gain setting. The Networked Driver also allows you to enable and disable the Hybrid Control feature on the fly. When the motor is at rest, a single message disables the Hybrid Control feature, and the motor acts as a stepper system, holding its position without dither. You can enable the Hybrid Control feature using the same message that initiates a move, minimizing the amount of motor current needed to complete the move.

When using Hybrid Control the Networked Driver has an additional status bit, the Motion_Lag bit, that turns on if the position error becomes larger than 360°. This status bit indicates that the speed of the move is not the one that is expected, but the move is still in progress. This can be an indication that something has changed mechanically in the system that has placed an additional load on the motor. Using this bit is the preferred method of performing stall detection. When this bit turns on, monitor the encoder position value for change. If the encoder value is changing, then the motor is heavily loaded but still moving. If the encoder value is not changing, then the motor cannot rotate under load and the move can be stopped by your program.

It is also possible to increase the motor current during the move. However, you must be aware of the possibility of overheating the motor when using this feature.

When using Hybrid Control, you should always check the value of the encoder position at the end of every move and make accommodations for any load induced error in the final position.
Network Interface Description

The network interface is located on the top of the drive, towards the tabbed mounting surface. The network status LED’s are also located in this area.

PROFINET Interface

The PROFINET Interface on the SD17060A2 and SD31045A2 drivers has two standard RJ-45 jacks that accept any standard 100baseT cable. Both Ethernet ports have an “auto switch” capability. This means that a standard cable can be used when connecting the Ethernet Driver to any device. Crossover cables are never needed.

The two ports are internally connected through an ethernet switch. In non-MRP applications, either port can be used. In non-MRP applications, you also have the ability to daisy chain a second device off of the Networked Driver if this would simplify your network wiring.

There are two LED’s on each of the RJ-45 jacks. The left LED is not used. The right LED shows the link status of the Ethernet connection. This LED will be on if the hardware connection is correct and flashing while transmitting and/or receiving data.

There are two additional LED’s to the left of the jacks. The Module Status (MS) LED gives additional information on the status of the unit. The Network Status (NS) LED gives additional information on the status of the network protocol.

Detailed descriptions of the Status LED’s can be found in the Specifications section of this reference starting on page 19.
Specifications

Driver Type
Two bipolar MOSFET H-bridges with 20KHz PWM current control.
SD17060A2 Drivers: 170Vdc output bus.
SD31045A2 Drivers: up to 310Vdc output bus.

Physical Dimensions
Width: SD17060A2 Drivers: 2.1 inches max.
SD31045A2 Drivers: 2.7 inches max.
Depth: 4.0 inches max.
Height: 6.2 inches
7.0 inches with mounting tabs

Weight
SD17060A2 Drivers: 2.4 lbs. (1.1 kg.) max.
SD31045A2 Drivers: 2.7 lbs. (1.25 kg.) max.

Inputs
Electrical Characteristics for all Inputs:....
Differential. 1500 Vac/dc opto-isolated. Can be wired as single ended inputs.
Accepts 3.5 to 27Vdc without the need for an external current limiting resistor.

Output
Electrical Characteristics:
Open Collector/Emitter. 1500 Vac/dc opto-isolated. 30Vdc, 20 mA max.
The Output can be programmed to be a general purpose output or a Fault Output.
The Fault Output is normally on. Turns off under the following conditions:
Reset The driver initialization is not yet complete on power up.
Short Circuit Motor Phase to Phase or Phase to Earth Ground
Over Temp Heat Sink temperature exceeds 90° C (195° F)
No Motor The motor interlock terminals are not connected.
Faults are reported in the Network Input Data and can be cleared through the Network Output Data.

Motor Interlock
Two pins that must be shorted together before power is applied to motor. Can be shorted together through mechanical relay contacts.

Motor Current
SD17060A2 Drivers: Programmable from 1.0 to 6.0 Arms in 0.2 Amp steps.
SD31045A2 Drivers: Programmable from 1.0 to 4.4 Arms in 0.2 Amp steps.

Motor Resolution
Programmable to any value from 200 to 32,767 steps per revolution.

Idle Current Reduction
Programmable from 0% to 100% programmed motor current in 1% increments. Motor current is reduced to selected level if there is no motion for 1.5 seconds. Current is restored to full value when motion is started.

Internal Power Fuses
10 Amp Slow Blow. Both Line and Neutral are fused. Fuses are not user replaceable.

Environmental Specifications
Input Power SD17060A2 Drivers: 95 to 132Vac, 50/60 Hz, 5.0 Apk max.
SD31045A2 Drivers: 95 to 264Vac, 50/60 Hz, 5.0 Apk max.

Ambient Operating Temperature
-4° to +122°F (-20° to +50°C)

Storage Temperature
-40° to +185°F (-40° to +85°C)

Humidity 0 to 95%, non-condensing

Motor Specifications
Type 2 phase hybrid. 4, 6, or 8 lead motor
Insulation Minimum 500Vdc phase-to-phase and phase-to-case
Inductance 0.3 mH minimum. 2.5 to 45 mH recommended

Connectors
All mating connectors are included with driver.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Wire</th>
<th>Strip Length</th>
<th>Min./Max. Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>28 - 16 AWG</td>
<td>0.275 inches</td>
<td>1.91/2.23 lb-in (0.22/0.25 Nm)</td>
</tr>
<tr>
<td>Motor</td>
<td>24 - 12 AWG</td>
<td>0.275 inches</td>
<td>4.46/5.35 lb-in (0.5/0.6 Nm)</td>
</tr>
<tr>
<td>Power</td>
<td>24 - 12 AWG</td>
<td>0.275 inches</td>
<td>4.46/5.35 lb-in (0.5/0.6 Nm)</td>
</tr>
</tbody>
</table>
Specifications (continued)

Front Panel Status LED’s

➢ **Power:** This green LED should be on when power is applied to the drive. If the LED is off, the input voltage is below 95VAC or one or both of the internal fuses are blown. The fuses are not field replaceable.

➢ **Status:**
 - Steady Green Driver OK
 - Steady Red Short Circuit Fault
 - Over Temperature Fault
 - Interlock Missing

A Networked Driver will only detect motor errors when the motor current is enabled.

PROFINET Status LED’s

➢ **Link Status** – On when there is a physical link between the Ethernet port of the Networked Driver and the Ethernet port of the device the driver is plugged into. This LED will flash when data is being transmitted over the Ethernet link.

➢ **Network Status (NS) LED**

The Network Status LED is a bi-color red/green LED. The state of the LED depends on the state of the PROFINET connection and the state of the IO Controller once a connection is established.

<table>
<thead>
<tr>
<th>LED State</th>
<th>PROFINET Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Power to unit, duplicate IP address on network, or no connection with IO controller has been established.</td>
</tr>
<tr>
<td>Alternating Red/Green</td>
<td>Power up Self-Test</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>On-line, Stop state. A connection with the IO Controller has been established, and the controller is in its STOP state.</td>
</tr>
<tr>
<td>Steady Green</td>
<td>On-line, Run state. A connection with the IO Controller has been established, and the controller is in its RUN state.</td>
</tr>
</tbody>
</table>

Table R1.3 Network Status LED States

➢ **Module Status (MS) LED**

The Module Status LED is a bi-color red/green LED. The state of the LED depends on the state of the Ethernet connection.

<table>
<thead>
<tr>
<th>LED State</th>
<th>PROFINET Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Power to unit.</td>
</tr>
<tr>
<td>Alternating Red/Green</td>
<td>Power up Self-Test</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>Unit not initialized with a valid IP address and/or Device Name.</td>
</tr>
<tr>
<td>Steady Green</td>
<td>Unit is initialized with a valid IP address and Device Name.</td>
</tr>
</tbody>
</table>

Table R1.4 Network Status LED States
The SD17060A2 and SD31045A2 drivers are Underwriter Laboratory Inc.® listed devices. It is listed as “Industrial Control Equipment” under the control number 60GB. The UL file number is E231137. The SD17060A2 and SD31045A2 are appropriate for UL and cUL applications.

UL Required Information

If your installation is to meet UL requirements, you must be aware of the following information when using the SD17060A2 or SD31045A2.

- Maximum surrounding air temperature is +50°C
- The driver does not incorporate internal motor overload protection.
- The driver does not provide motor over temperature protection.
- The driver does not provide overspeed protection.
- The driver shall be used in pollution degree 1 or 2 environments. If the driver is mounted in an enclosure, this enclosure must meet these requirements.
- All wiring to the driver shall be R/C (AVLV2), minimum rating of 80°C, 300V, except secondary low-voltage circuit wiring.
- Use 75°C copper conductors only.
- Terminals shall be tighten to manufacturer’s recommended torques
- Power Connector shall be rated for a minimum 12A, 600V, in a pollution degree 2 environment
- Motor Connector shall be rated for a minimum 16A, 600V, in a pollution degree 2 environment
- I/O Connector shall be rated for a minimum 8A, 300V, in a pollution degree 2 environment

† The mating connectors supplied with the SD17060A2 and SD31045A2 meet these requirements. Additional mating connectors can be ordered directly from Phoenix Contact under the following part numbers:

<table>
<thead>
<tr>
<th>Location</th>
<th>Phoenix Contact Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1737822</td>
</tr>
<tr>
<td>Motor</td>
<td>1912919</td>
</tr>
<tr>
<td>I/O</td>
<td>1803633</td>
</tr>
</tbody>
</table>

Table R2.1 Mating Connectors
Units of Measure

Distance: Every distance is measured in steps. Your programming will give you a specific number of steps needed to complete one rotation of the motor shaft. It is up to you to determine how many steps are required to travel the appropriate distance in your application.

Speed: All speeds are measured in steps/second. Since the number of steps needed to complete one shaft rotation is determined by your programming, it is up to you to determine how many steps per second is required to rotate the motor shaft at your desired speed.

Acceleration: The typical unit of measure for acceleration and deceleration is steps/second/second, or steps/second2. However, when programming a Networked Driver, all acceleration and deceleration values must be programmed in the unit of measure of steps/millisecond/second.

- To convert from steps/second2 to steps/millisecond/second, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into a Networked Driver.

- To convert from steps/millisecond/second to steps/second2, multiply the value by 1000. This must be done when converting from the value programmed into a Networked Driver to the value used in the equations.

Definition of Count Direction

In order to match other products from AMCI, this manual defines some moves in terms of clockwise (CW) and counter-clockwise (CCW) rotation. Clockwise moves will always increase the motor position register that is reported back to the host. When AMCI motors are wired as shown in this manual, a CW move command will result in clockwise shaft rotation when looking at the shaft. Note that it is possible to reverse the direction of rotation by switching the ±B connections on the motor connector.

Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. There are two ways to defining the Home Position. The first is using the Preset Position command to set the Motor Position register to a known value. The second method is using one of the Find Home commands. If you use the unit’s Find Home commands, the motor position and encoder position registers will automatically be set to zero once the home position is reached. If you need a non-zero home position, you must issue a Preset Position command with the desired value after the unit has been homed.

NOTE

Defining a Home Position is completely optional. Some applications, such as those that use the Networked Driver for speed control, don’t require position data at all.

Definition of Starting Speed

The Starting Speed is the speed that most moves will begin and end at. This value is set while configuring the unit and it has a valid range of 1 to 1,999,999 steps/second. This value is typically used to start the move above the motor’s low frequency resonances and, in micro-stepping applications, to limit the amount of time needed for acceleration and deceleration. AMCI does not specify a default value in this manual because it is very dependent on motor size and attached load.
Definition of Target Position

The Target Position is the position that you want the move to end at. There are two ways to define the Target Position, with relative coordinates or absolute coordinates.

Relative Coordinates

Relative coordinates define the Target Position as an offset from the present position of the motor. Most Networked Driver moves use relative coordinates.

- The range of values for the Target Position when it is treated as an offset is ±8,388,607 counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.
- The Motor Position register that is reported back to the host has a minimum range of -32,768,000 to 32,767,999 counts. The only way to move beyond ±8,388,607 counts is with multiple relative moves or jog commands.

Absolute Coordinates

Absolute coordinates treat the Target Position as an actual position on the machine. Note that you must set the Home Position on the machine before you can run an Absolute Move. (See *Definition of Home Position* on the previous page.)

- The range of values for the Target Position when it is treated as an actual position on the machine is ±8,388,607 counts. The move will be clockwise if the Target Position is greater than the Current Position and negative if the Target Position is less than the Current Position.
- The Motor Position register that is reported back to the host has a minimum range of -32,768,000 to 32,767,999 counts. However, you cannot move beyond ±8,388,607 counts with an Absolute Move. The only way to move beyond ±8,388,607 counts is with multiple relative moves or jog commands.

Definition of Acceleration Types

With the exception of Registration Moves, all move commands, including homing commands, allow you to define the acceleration type used during the move. The Networked Driver supports three types of accelerations and decelerations. The type of acceleration used is controlled by the Acceleration Jerk parameter.

Detailed move profile calculations, including the effect of the Acceleration Jerk parameter, can be found in the reference section, *Calculating Move Profiles*, starting on page 103.

Linear Acceleration

When the Acceleration Jerk parameter equals zero, the axis accelerates (or decelerates) at a constant rate until the programmed speed is reached. This offers the fastest acceleration, but consideration must be given to insure the smoothest transition from rest to the acceleration phase of the move. The smoothest transition occurs when the configured Starting Speed is equal to the square root of the programmed Linear Acceleration. Note that other values will work correctly, but you may notice a quick change in velocity at the beginning of the acceleration phase.

![Figure R3.1 Linear Acceleration](image_url)
Definition of Acceleration Types (continued)

Triangular S-Curve Acceleration

When the Acceleration Jerk parameter equals one, the axis accelerates (or decelerates) at a constantly changing rate that is slowest at the beginning and end of the acceleration phase of the move. The Triangular S-Curve type offers the smoothest acceleration, but it takes twice as long as a Linear Acceleration to achieve the same velocity.

![Triangular S-Curve Acceleration](image1)

Trapezoidal S-Curve Acceleration

When the Acceleration Jerk parameter is in the range of 2 to 5,000, Trapezoidal S-Curve acceleration is used. The Trapezoidal S-Curve acceleration is a good compromise between the speed of Linear acceleration and the smoothness of Triangular S-Curve acceleration. Like the Triangular S-Curve, this acceleration type begins and ends the acceleration phase smoothly, but the middle of the acceleration phase is linear. Figure R3.3 shows a trapezoidal curve when the linear acceleration phase is half of the total acceleration time. With this setting, the Trapezoidal S-Curve acceleration only requires 33% more time to achieve the same velocity as a Linear Acceleration.

![Trapezoidal S-Curve Acceleration](image2)
A Simple Move

As shown in the figure below, a move from A (Current Position) to B (Target Position) consists of several parts.

1) The move begins at point A, where the motor jumps from rest to the configured *Starting Speed*. The motor then accelerates at the programmed *Acceleration Value* until the speed of the motor reaches the *Programmed Speed*. Both the Acceleration Value and the Programmed Speed are programmed when the move command is sent to the Networked Driver.

2) The motor continues to run at the Programmed Speed until it reaches the point where it must decelerate before reaching point B.

3) The motor decelerates at the *Deceleration Value*, which is also programmed by the move command, until the speed reaches the Starting Speed, which occurs at the Target Position (B). The motor stops at this point. Note that the move’s acceleration and deceleration values can be different.

Figure R3.4 above shows a Trapezoidal Profile. A Trapezoidal Profile occurs when the Programmed Speed is reached during the move. This occurs when the number of steps needed to accelerate and decelerate are less than the total number of steps in the move.

Figure R3.5 below shows a Triangular Profile. A Triangular Profile occurs when the number of steps needed to accelerate to the Programmed Speed and decelerate from the Programmed Speed are greater than the total number of steps in the move. In this case, the profile will accelerate as far as it can before it has to decelerate to reach the Starting Speed at the Target Position. The Programmed Speed is never reached.
Controlled and Immediate Stops

Once a move is started, there are several ways to stop the move before it comes to an end. These stops are broken down into two types:

- **Controlled Stop:** The axis immediately begins decelerating at the move’s programmed deceleration value until it reaches the configured Starting Speed. The axis stops at this point. The motor position value is still considered valid after a Controlled Stop and the machine does not need to be homed again before Absolute Moves can be run.

- **Immediate Stop:** The axis immediately stops motion regardless of the speed the motor is running at. Since it is possible for the inertia of the load attached to the motor to pull the motor beyond the stopping point, the motor position value is considered invalid after an Immediate Stop. The machine must be homed or the position must be preset before Absolute Moves can be run again.

Host Control

Hold Move Command: This command can be used with some moves to bring the axis to a Controlled Stop. The move can be resumed and finished, or it can be aborted. Not all moves are affected by this command. The section *Basic Move Types*, starting on page 27, describes each move type in detail, including if the move is affected by this command.

Immediate Stop Command: When this command is issued from the host, the axis will come to an Immediate Stop. The move cannot be restarted and the machine must be homed again before Absolute Moves can be run.

Hardware Control

CW Limit and CCW Limit Inputs: In most cases, activating these inputs during a move will bring the axis to an Immediate Stop. The exceptions are the CW/CCW Find Home commands, the CW/CCW Jog Move commands, and the CW/CCW Registration Move commands. The Find Home commands are explained in the reference section, *Homing an AMCI Networked Driver*, which starts on page 43. The CW/CCW Jog Move commands are fully explained on page 29, and the CW/CCW Registration Move commands are fully explained on page 31.

Emergency Stop Input: It is possible to configure an input as an Emergency Stop Input. When an Emergency Stop Input is activated, the axis will come to an Immediate Stop, regardless of the direction of travel. Note that power is not removed from the motor.

Basic Move Types

Relative Move

Relative Moves move an offset number of steps (n) from the Current Position (A). A trapezoidal profile is shown to the right, but Relative Moves can also generate triangular profiles. The command’s Target Position is the move’s offset. The offset can be in the range of ±8,388,607 counts. Positive offsets will result in clockwise moves, while negative offsets result in counter-clockwise moves.

NOTE

1) You do not have to preset the position or home the machine before you can use a Relative Moves. That is, the Position Invalid status bit can be set.

2) Relative Moves allow you to move your machine without having to calculate absolute positions. If you are indexing a rotary table, you can perform a relative move of 30° multiple times without recalculating new target positions in your controller. If you perform the same action with Absolute Moves, you would have to calculate your 30° position followed by your 60° position, followed by your 90° position, etc.
Basic Move Types (continued)

Relative Move (continued)

Relative Moves can be brought to a Controlled Stop by using the Hold Move Command from your host controller. When the command is accepted, the axis will immediately decelerate at the programmed rate and stop. When stopped successfully, the Networked Driver will set a In_Hold_State bit in the input data table. The Relative Move can be restarted with the Resume Move command from the host controller or the move can be aborted by starting another move. The Resume Move command allows you to change the move’s Programmed Speed, Acceleration Value and Type, and the Deceleration Value and Type. The Target Position cannot be changed with the Resume Move Command.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Relative Move by using the Resume Move command. The use of the Hold_Move and Resume_Move bits is further explained in the Controlling Moves In Progress section starting on page 39.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Output Data.
- An inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Absolute Move

Absolute Moves move from the Current Position (A) to a given position (B). (The Networked Driver calculates the direction and number of steps needed to move to the given position and moves that number of steps.) A trapezoidal profile is shown to the right, but Absolute Moves can also generate triangular profiles. The command’s Target Position can be in the range of ±8,388,607 counts. The move will be clockwise if the Target Position is greater than the Current Position and counter-clockwise if the Target Position is less than the Current Position.

1) The Home Position of the machine must be set before running an Absolute Move. See the reference section, Homing an AMCI Networked Driver, which starts on page 43, for information on homing the machine.

2) The Motor Position must be valid before you can use an Absolute Move. The Motor Position becomes valid when you preset the position or home the machine.

3) Absolute Moves allow you to move your machine without having to calculate relative positions. If you are controlling a rotary table, you can drive the table to any angle without having to calculate the distance to travel. For example an Absolute Move to 180° will move the table to the correct position regardless of where the move starts from.
Basic Move Types (continued)

Absolute Move (continued)

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Absolute Move by using the Resume_Move bit or the move can be aborted by starting another move. The use of the Hold_Move and Resume_Move bits is explained in the *Controlling Moves In Progress* section starting on page 39.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- An inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a *Reset Errors* command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a *Reset Errors* command does not have to be issued.

CW/CCW Jog Move

Jog Moves move in the programmed direction as long as the command is active. Two commands are available. The CW Jog Move will increase the motor position count while the CCW Jog Move will decrease the motor position count. These commands are often used to give the operator manual control over the axis.

Jog Moves are also used when you are interested in controlling the speed of the shaft instead of its position. One such application is driving a conveyor belt. To accommodate these applications, the running speed, acceleration, and deceleration of the Jog Move can be changed ***while the move is in progress***.

The CW Limit and CCW Limit inputs behave differently for CW/CCW Jog Moves and CW/CCW Registration Moves than all other move types. Like all moves, activating a limit will bring the move to an Immediate Stop. Unlike other moves, a Jog or Registration move can be started when an end limit switch is active provided that the commanded direction is opposite that of the activated switch. For example, a CW Jog Move can be issued while the CCW limit switch is active. This allows you to move off of an activated end limit switch.
Basic Move Types (continued)

CW/CCW Jog Move (continued)

As shown below, a Jog Moves begins at the programmed Starting Speed, accelerates at the programmed rate to the Programmed Speed and continues until a stop condition occurs. If it is a Controlled Stop Condition, the Networked Driver will decelerate the motor to the starting speed and stop without losing position. If it is an Immediate Stop Condition, the motion stops immediately and the position becomes invalid.

It is possible to change the speed of a Jog Move without stopping the motion. The Programmed Speed, Acceleration, and Deceleration parameters can be changed during a Jog Move. When the Programmed Speed is changed, the motor will accelerate or decelerate to the new Programmed Speed using the new accelerate/decelerate parameter values. If you write a Programmed Speed to the unit that is less than the starting speed, the Jog Move will continue at the previously programmed speed.

Figure R3.8 Jog Move

Controlled Stop Conditions

- The Jog Move Command bit is reset to “0”.
- An inactive-to-active transition on an input configured as a Stop Jog or Registration Move Input.

NOTE If the Stop Jog or Registration Move Input is active when a Jog Move command is accepted, the Networked Driver will not move the motor. A command error will not be issued. The motor will simply not move.
- You toggle the Hold_Move control bit in the Network Output Data. The use of the Hold_Move and Resume_Move bits is explained in the Controlling Moves In Progress section starting on page 39.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

NOTE Note that it is possible to start a move while a CW or CCW Limit Switch is active as long as the direction of travel is opposite that of the activated Limit Switch. For example, it is possible to start a CW Jog Move while the CCW Limit Switch is active.
Basic Move Types (continued)

CW/CCW Registration Move

Similar to a Jog Move, a Registration Move will travel in the programmed direction as long as the command is active. CW Registration Moves increase the motor position count while the CCW Registration Moves decrease the motor position count. When the command terminates under Controlled Stop conditions, the Networked Driver will output a programmed number of steps as part of bringing the move to a stop. Note that all position values programmed with a Registration Move are relative values, not absolute machine positions.

Figure R3.9 Registration Move

If the Programmed Number of Steps are less than the number of steps needed to bring the axis to a stop based on the Programmed Speed and Deceleration values set with the command, the Networked Driver will decelerate at the programmed Deceleration value until it has output the Programmed Number of Steps and then stop the move without further deceleration.

An additional feature of the Registration Moves is the ability to program the driver to ignore the Controlled Stop conditions until a minimum number of steps have occurred. This value is programmed through the Minimum Registration Move Distance parameter, which is set when you command the Registration Move. The figure below shows how the Minimum Registration Move Distance parameter affects when the Stop Condition is applied to the move. As shown in the second diagram, Controlled Stop conditions are level triggered, not edge triggered. If a Controlled Stop Condition occurs before the Minimum Registration Move Distance is reached and stays active, the move will begin its controlled stop once the Minimum Registration Move Distance is reached.

Figure R3.10 Min. Registration Move Distance
Basic Move Types (continued)

CW/CCW Registration Move (continued)

Controlled Stop Conditions

- The Registration Move Command bit is reset to “0”.
- A positive transition on an input configured as a Stop Jog or Registration Move Input.

NOTE Starting a Registration Move with a Stop Jog or Registration Move Input in its active state will result in a move of (Minimum Registration Distance + Programmed Number of Steps).

- You toggle the Hold_Move control bit in the Network Output Data. The Networked Driver responds by using the programmed Deceleration value to bring the move to a stop, without using the value of the Programmed Number of Steps parameter. A Registration Move does not go into the Hold State if the Hold_Move control bit is used to stop the move and it cannot be restarted.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- An inactive-to-active transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

NOTE Note that it is possible to start a move while a CW or CCW Limit Switch is active as long as the direction of travel is opposite that of the activated Limit Switch. For example, it is possible to start a CW Registration Move while the CCW Limit Switch is active.

Encoder Registration Move

When the Networked Driver is configured to use a quadrature encoder, the position value from the encoder can be used as a registration mark. Once the encoder count is reached, the move will begin to decelerate and stop when the move slows to the configured Starting Speed. Absolute and relative type move types are supported. When programming an absolute move, the target position defines the encoder position that must be reached before the move begins to decelerate and stop. When programming a relative move, the sign of the target position determines the direction of the move and its magnitude determines the distance traveled.

NOTE

1) The encoder is typically mounted separate from the motor. For example, the encoder can measure the length of a flexible and/or stretchable material, or material on a spool. The motor is used to drive the material for the length measured by the encoder, regardless of the slipping, flexing, or stretching, of the material as it is driven by the motor.

2) This is an open-loop move. The encoder does not provide feedback in a closed-loop, servo control fashion. The encoder position is used to decide when the move deceleration begins, not the final position of the move.

3) You do not have to preset the position or home the machine before you can use a relative Encoder Registration Move.
Basic Move Types (continued)

Encoder Registration Move (continued)

The figure below represents either a relative Encoder Registration Move of 11,000 counts or an absolute Encoder Registration Move to position 16,000. The figure shows that the encoder position you program in the move defines the point at which the motor begins to decelerate and stop. *It does not define the stopping position as it does in other move types.* The endpoint of the move depends on the speed of the motor when the programmed encoder position is reached and the deceleration values. This behavior is different from Absolute and Relative Moves where the position you program into the move is the end point of the move.

![Diagram of Encoder Registration Move](image)

Controlled Stop Conditions

- The move completes without error
- You toggle the Hold_Move control bit in the Network Output Data. Note that your holding position will most likely not be the final position you commanded. You can resume a held Encoder Registration Move by using the Resume_Move bit. The use of the Hold_Move and Resume_Move bits is explained in the *Controlling Moves In Progress* section starting on page 39.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW/CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a *Reset Errors* command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a *Reset Errors* command does not have to be issued.

Assembled Moves

All of the moves explained so far must be run individually to their completion or must be stopped before another move can begin. The Networked Driver also gives you the ability to pre-assemble more complex profiles from a series of relative moves that are then run with a single command. Each Assembled Move can consist of 2 to 16 segments. Two types of Assembled Moves exist in a Networked Driver:

- **Blend Move** - A Blend Move gives you the ability to string multiple relative moves together and run all of them sequentially without stopping the shaft between moves. A Blend Move can be run in either direction, and the direction is set when the move command is issued.

- **Dwell Move** - A Dwell Move gives you the ability to string multiple relative moves together, and the Networked Driver will stop between each move for a programmed Dwell Time. Because motion stops between each segment, a Dwell Move allows you to reverse direction during the move.
Assembled Moves (continued)

Blend Move

Each Relative Move defines a segment of the Blend Move. The following restrictions apply when programming Blend Moves.

1) Each segment of the Blend Move must be written to the Networked Driver before the move can be initiated.
 ▶ The Networked Driver supports Blend Moves with up to sixteen segments.
2) Each segment is programmed as a relative move. Blend Moves cannot be programmed with absolute coordinates.
3) All segments run in the same direction. The sign of the target position is ignored and only the magnitude of the target position is used. The move’s direction is controlled by the bit pattern used to start the move. If you want to reverse direction during your move, consider using the Dwell Move which is explained starting on page 35.
4) The Programmed Speed of each segment must be greater than or equal to the Starting Speed.
5) The Programmed Speed can be the same between segments. This allows you to chain two segments together.
6) For all segments except for the last one, the programmed position defines the end of the segment. For the last segment, the programmed position defines the end of the move.
7) Once you enter a segment, that segment’s programmed acceleration and deceleration values are used to change the speed of the motor.
8) The blend segment must be long enough for the acceleration or deceleration portions of the segment to occur. If the segment is not long enough, the motor speed will jump to the speed of the next segment without acceleration or deceleration.

The figure below shows a three segment Blend Move that is run twice. It is first run in the clockwise direction, and then in the counter-clockwise direction.

The deceleration value programmed with segment 3 is used twice in the segment. Once to decelerate from the Programmed Speed of segment 2 and once again to decelerate at the end of the move.
Assembled Moves (continued)

Blend Move (continued)

1) You do not have to preset the position or home the machine before you can use a Blend Move. Because the Blend Move is based on Relative Moves, it can be run from any location.

2) The Blend Move is stored in the internal memory of the Networked Driver and can be run multiple times once it is written to the unit. The Blend Move data stays in memory until power is removed, the unit is sent new Configuration Data, or a new Blend or Dwell Move is written to the unit. As described in Saving an Assembled Move in Flash on page 37, it is also possible to save a Blend Move to flash memory. This move is restored on power up and can be run as soon as you configure the Networked Driver and enter Command Mode.

3) There are two control bits used to specify which direction the Blend Move is run in. This gives you the ability to run the Blend Move in either direction.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. When this occurs, the Networked Driver decelerates the move at the deceleration rate of the present segment to the Starting Speed and ends the move. Note that your final position will most likely not be the one you commanded. A Blend Move that is brought to a controlled stop with the Hold_Move bit cannot be restarted. The use of the Hold_Move bit is explained in the Controlling Moves In Progress section starting on page 39.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.

Dwell Move

A Dwell Move gives you the ability to string multiple relative moves together and run all of them sequentially with a single start condition. Like a Blend Move, a Dwell Move is programmed into a Networked Driver as a series of relative moves before the move is started.

Unlike a Blend Move, the motor is stopped between each segment of the Dwell Move for a programmed Dwell Time. The Dwell Time is programmed as part of the command that starts the move. The Dwell Time is the same for all segments. Because the motor is stopped between segments, the motor direction can be reversed during the move. The sign of the target position for the segment determines the direction of motion for that segment. Positive segments will result in clockwise shaft rotation while a negative segment will result in a counterclockwise shaft rotation.
Assembled Moves (continued)

Dwell Move (continued)

The following figure shows a drilling profile that enters the part in stages and reverses direction during the drilling operation so chips can be relieved from the bit. You could accomplish this Dwell Move with a series of six relative moves that are sent down to the Networked Driver sequentially. The two advantages of a Dwell Move in this case are that the Networked Driver will be more accurate with the Dwell Time then you can be in your control program, and Dwell Moves simplify your program’s logic.

![Figure R3.13 Dwell Move](image)

1) You do not have to preset the position or home the machine before you using a Dwell Move. Because the Dwell Move is based on Relative Moves, it can be run from any location.

2) The Dwell Move is stored in the internal memory of the Networked Driver and can be run multiple times once it is written to the unit. The Dwell Move data stays in memory until power is removed, the unit is sent new Configuration Data, or a new Blend or Dwell Move is written to the Networked Driver. As described in Saving an Assembled Move in Flash on page 37, it is also possible to save a Dwell Move to flash memory. This move is restored on power up and can be run as soon as you configure your Networked Driver and enter Command Mode.

Controlled Stop Conditions

- The move completes without error.
- You toggle the Hold_Move control bit in the Network Output Data. When this occurs, the Networked Driver decelerates the move at the deceleration rate of the present segment to the Starting Speed and ends the move. Note that your final position will most likely not be the one you commanded. A Dwell Move that is brought to a controlled stop with the Hold_Move bit cannot be restarted.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Data.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached. If the limit that is reached is the same as the direction of travel, for example, hitting the CW limit while running a CW move, a Reset Errors command must be issued before moves are allowed in that direction again. If the limit that is reached is opposite the direction of travel, a Reset Errors command does not have to be issued.
Assembled Move Programming

All of the segments in a Blend or Dwell Move must be written to the Networked Driver before the move can be run. Segment programming is controlled with two bits in the Network Output Data and two bits in the Network Input Data. Blend and Dwell Moves are programmed in exactly the same way. When you start the move, a bit in the command data determines which type of Assembled Move is run. In the case of a Blend Move, the signs of the segment’s Target Positions are ignored and all segments are run in the same direction. In the case of a Dwell Move, the signs of the segment’s Target Positions determine the direction of the segment. For Dwell Moves, the Dwell Time is sent to the Networked Driver as part of the command.

Control Bits – Output Data

- **Program_Assembled bit** – Set this bit to tell the Networked Driver that you want to program a Blend or Dwell Move Profile. The Networked Driver will respond by setting the **In_Assembled_Mode** bit in the Network Input Data. At the beginning of the programming cycle, the Networked Driver will also set the **Waiting_For_Assembled_Segment** bit to signify that it is ready for the first segment.

- **Read_Assembled_Data bit** – Set this bit to tell the Networked Driver that the data for the next segment is available in the remaining data words.

Control Bits – Input Data

- **In_Assembled_Mode bit** – The Networked Driver sets this bit to tell you that it is ready to accept segment programming data in the remaining output data words. The actual transfer of segment data is controlled by the **Waiting_For_Assembled_Segment** and **Read_Assembled_Data** bits.

- **Waiting_For_Assembled_Segment bit** – The Networked Driver will set this bit to signal the host that it is ready to accept the data for the next segment.

Programming Routine

1) The host sets the **Program_Assembled** bit in the Network Output Data.

2) The Networked Driver responds by setting both the **In_Assembled_Mode** and **Waiting_For_Assembled_Segment** bits in the Network Input Data.

3) When the host detects that the **Waiting_For_Assembled_Segment** bit is set, it writes the data for the first segment in the Network Output Data and sets the **Read_Assembled_Data** bit.

4) The Networked Driver checks the data, and when finished, resets the **Waiting_For_Assembled_Segment** bit. If an error is detected, it also sets the **Command_Error** bit.

5) When the host detects that the **Waiting_For_Assembled_Segment** bit is reset, it resets the **Read_Assembled_Data** bit.

6) The Networked Driver detects that the **Read_Assembled_Data** bit is reset, and sets the **Waiting_For_Assembled_Segment** bit to signal that it is ready to accept data for the next segment.

7) Steps 3 to 6 are repeated for the remaining segments until the entire move profile has been entered. The maximum number of segments per profile is sixteen.

8) After the last segment has been transferred, the host exits Assembled Move Programming Mode by resetting the **Program_Assembled** bit.

9) The Networked Driver resets the **In_Assembled_Mode** and the **Waiting_For_Assembled_Segment** bits.

Saving an Assembled Move in Flash

The Networked Driver also contains the **Save_Assembled_to_Flash** bit that allows you to store the Assembled Move in flash memory. This allows you to run the Assembled Move right after power up, without having to go through a programming sequence first. To use this bit, you follow the above programming routine with the **Save_Assembled_to_Flash** bit set. When you reach step 9 in the sequence, the Networked Driver responds by resetting the **In_Assembled_Mode** and **Transmit Blend Move Segments** bits as usual and then it will flash the Status LED. If the LED is flashing green, the write to flash memory was successful. If it flashes red, then there was an error in writing the data. In either case, power must be cycled to the Networked Driver before you can continue. With a limit of 10,000 write cycles, the design decision that requires you to cycle power to the Networked Driver was made to prevent an application from damaging the module by continuously writing to it.
Indexed Moves

All of the moves that have been explained in the chapter up to this point can be started by a transition on one of the inputs instead of a command from the network. If the Indexed Move bit is set when the command is issued, the Networked Driver will not run the move until the configured input makes an inactive-to-active transition. This allows you to run time critical moves that cannot be reliably started from the network because of messaging time delays.

- The input must be configured as a Start Indexed Move Input.
- The move begins with an inactive-to-active transition on the input. Note that an active-to-inactive transition on the input will not stop the move.
- The move command must stay in the Network Output Data while performing an Indexed Move. The move will not occur if you reset the command word before the input triggers the move.
- The move can be run multiple times as long as the move command data remains unchanged in the Network Output Data. The move will run on every inactive-to-active transition on the physical input if a move is not currently in progress. Once a move is triggered, the Start Indexed Move Input is ignored by the Networked Driver until the triggered move is finished.
- As stated above, a move can be run multiple times as long as the move command data remains unchanged. If you wish to program a second move and run it as an Indexed Move type, then you must have a 0→1 transition on the move command bit before the new parameters are accepted. The easiest way to accomplish this is by writing a value of 16#0000 to the command word between issuing move commands.
- A Jog Move that is started as an Indexed Move will come to a controlled stop when the command bit in the Network Output Data is reset to zero.
- It is possible to perform an indexed Registration Move by configuring two inputs for their respective functions. The first input, configured as a Start Indexed Move Input, starts the move and the second, configured as a Stop Jog or Registration Move Input causes the registration function to occur.
- You cannot issue a Hold Command with the Indexed Bit set and have the Hold Command trigger on the inactive-to-active transition of a physical input. Hold Commands are always acted upon as soon as they are accepted from the Network Output Data.
- You cannot issue an Immediate Stop Command with the Indexed Bit set and have the Immediate Stop Command trigger on the inactive-to-active transition of a physical input. Immediate Stop Commands are always acted upon as soon as they are accepted from the Network Output Data. If you need this functionality, consider programming the physical input as an E-Stop Input.
- You cannot issue a Clear Error Command with the Indexed Bit set and have the Clear Error Command trigger on the inactive-to-active transition of a physical input. Clear Error Commands are always acted upon as soon as they are accepted from the Network Output Data.
Controlling Moves In Progress

Each Networked Driver has the ability to place a running move on hold and later resume the move if an error did not occur while the move was in its Hold state. One potential application for this feature is bringing a move to a controlled stop when your controller senses an end-of-stock condition. The move can be put in its Hold state until the stock is replenished and then the move can be resumed.

Note that you do not have to resume a move once it has been placed in its Hold state. You can place a move in its Hold state to prematurely end the move with a controlled stop and issue a new move of any type from the stopped position.

The figure below shows a profile of a move that is placed in its Hold state and later resumed.

Find Home Moves

A Find Home command can be placed in a Hold state but cannot be resumed. This gives you the ability to bring a Find Home command to a controlled stop if an error condition occurs.

Jog Moves

Jog Moves can be placed in a Hold state and resumed if error conditions, such as programming errors, have not occurred. New Acceleration, Deceleration, and Programmed Speed parameters can be written to the Networked Driver while a Jog Move is in its hold state. If these parameters are accepted without error, the move can be resumed and it will use the new parameter values.

Registration Moves

Registration Moves can be brought to a controlled stop with the Hold bit, but they cannot be restarted.

Absolute, Relative, and Encoder Registration Moves

Absolute, Relative, and Encoder Registration Moves can be placed in a Hold state and resumed if error conditions, such as programming errors, have not occurred. New Acceleration, Deceleration, and Programmed Speed parameters can be written to the Networked Driver while these moves are in their hold states. If the parameters are accepted without error, the move can be resumed and it will use the new parameter values. Note that a change to the Target Position is ignored.

Assembled Moves

A Blend or Dwell Move can be placed in a Hold state but cannot be resumed. This gives you the ability to prematurely end an Assembled Move with a controlled stop. The Assembled Move is not erased from memory and can be run again without having to reprogram it.
Electronic Gearing

The final form of motion control available with a Networked Driver is Electronic Gearing. A quadrature encoder is required but it is not mounted on the motor controlled by the Networked Driver. The encoder is typically mounted on a second motor, but it can be mounted anywhere, including on something as simple as a hand crank.

This mode is sometimes referred to as encoder following, because the motor will change position in response to a change in position of the encoder. AMCI refers to it as Electronic Gearing because the Networked Driver has three parameters that allow you to set any turns ratio you want between the encoder and the motor.

Motor Resolution

This is the same parameter explained at the beginning of this chapter. In Electronic Gearing mode, this parameter sets the number of encoder counts required to complete one rotation of the shaft of the motor driven by the Networked Driver. It has a range of 200 to 32,767. If you set the Motor Resolution parameter to four times the number of lines of your encoder, then by default your motor will complete one rotation for every rotation of the encoder.

ELGearing Multiplier and Divisor

The ratio of these two parameters sets the number of motor rotations per encoder rotation. Each parameter has a range of 1 to 255.

How It Works

The Networked Driver always uses 4X decoding when counting pulses from the encoder. If you set the Motor Resolution parameter to four times the number of encoder lines, and set both of the ELGearing Multiplier and Divisor parameters to 1, then the motor will complete one rotation for every rotation of the encoder’s shaft.

Once placed in Electronic Gearing mode, the Networked Driver monitors the Jog Move command bits in the Network Output Registers. When either of these bits are set, the encoder inputs are monitored for a change in position. When a change is sensed, the Networked Driver will begin to turn the motor within 50 microseconds. An increase in encoder counts will result in clockwise rotation. A decrease in encoder counts will result in counter-clockwise rotation.

The values of the ELGearing Multiplier and Divisor can be changed while electronic gearing motion is occurring. The Networked Driver will accelerate or decelerate the motor to match the new ratio.

Encoder position data can be captured and reported to the host controller while in Electronic Gearing mode by configuring Input 3 as a Capture Encoder Position input.

NOTE: You must set the Acceleration and Deceleration parameters before you can put the Networked Driver in Electronic Gearing mode.

Controlled Stop Conditions

- The encoder stops moving.
- Both of the Jog Move command bits equal zero.
- Electronic Gearing moves cannot be brought to a controlled stop by using the Hold_Move control bit in the Network Output Registers.

Immediate Stop Conditions

- The Immediate_Stop bit makes a 0→1 transition in the Network Input Registers.
- A positive transition on an input configured as an E-Stop Input.
- A CW or CWW Limit Switch is reached.
Electronic Gearing (continued)

Advanced Ratio Control

The ELGearing Multiplier and Divisor values give you a great deal of control over the ratio of motor turns per encoder turn, but you can achieve even finer control by adjusting the Motor Resolution parameter.

The Z pulse is not used to correct the encoder position once per turn, so you can actually program the Motor Resolution parameter to any value you want within its valid range. For example, if your encoder outputs 4,096 pulse per turn (a 1,024 line encoder) and you set the Motor Resolution parameter to 8,192, you will have built a 2:1 gear down into your system before applying the ELGearing Multiplier and Divisors. (Two rotations of the encoder = 8,192 counts = 1 motor rotation.)

This technique allows you to set a median gear ratio in your system that you can adjust on-the-fly by using the ELGearing Multiplier and Divisor parameters.
Notes
Definition of Home Position

The Home Position is any position on your machine that you can sense and stop at. Once at the Home Position, the motor position register of a Networked Driver must be set to an appropriate value. If you use the unit’s CW/CCW Find Home commands, the motor position register will automatically be set to zero once the home position is reached. The Encoder Position register will also be reset to zero if the encoder is available and enabled.

NOTE: Defining a Home Position is completely optional. Some applications, such as those that use a Networked Driver for speed control, don’t require position data at all.

With the exception of Absolute Moves, a Networked Driver can still perform all of its move commands if the Home Position is not defined.

Position Preset

One of the ways to define the Home Position is to issue the Preset Position command to the Networked Driver. On units with integral encoders, both the motor position and the encoder position can be preset separately, and the motor position can also be preset to the encoder position. The motor and encoder position values can be preset anywhere in the range of –8,388,607 to +8,388,607.

CW/CCW Find Home Commands

The other choice is to use the driver’s Find Home commands to order the Networked Driver to find the Home Position based on sensors brought into the unit. The CW Find Home command begins searching by rotating the motor shaft in the positive direction and ends when the home sensor triggers while the Networked Driver is rotating in the positive direction at the starting speed. The CCW Find Home command operates in the same way but starts and ends with motion in the negative direction.

Homing Inputs

Four inputs can be used when homing the driver. These inputs are either physical inputs attached to the unit or bits in the network output data words.

Physical Inputs

- **Home Input:** This input is used to define the actual home position of the machine.
- **CW Limit Switch Input:** This input is used to prevent overtravel in the clockwise direction.
- **CCW Limit Switch Input:** This input is used to prevent overtravel in the counter-clockwise direction.

Backplane Inputs

- **Backplane_Proximity_Bit:** A Networked Driver can be configured to ignore changes on the physical homing input until the Backplane_Proximity_Bit makes a 0→1 transition. The Networked Driver will home on the next inactive-to-active change on the physical input once this transition occurs. You must program your host to control the state of this bit.
Homing Configurations

A Networked Driver must have one of its DC inputs configured as the home input before one of the CW/CCW Find Home commands can be issued.

1) You do not have to configure and use CW or CCW Limits. If you choose to configure the module this way, then the Networked Driver has no way to automatically prevent overtravel during a homing operation. You must prevent overtravel by some external means, or ensure that the homing command is issued in the direction that will result in reaching the homing input directly.

2) You can use a bit in the Network Output Data (the Backplace_Proximity_Bit) as a home proximity input. Using this bit is completely optional and prevents the Home Input from being acted upon until the Backplace_Proximity_Bit makes a 0→1 transition.

Homing Profiles

1) The CW Find Home command is used in all of these examples. The CCW Find Home command will generate the same profiles in the opposite direction.

2) The homing diagrams show CW and CCW direction on their vertical axes. These are the directions that will occur if using an AMCI motor that is wired as shown in this manual. It is possible to reverse the direction of rotation by swapping one connections on one of the motor windings.

Home Input Only Profile

Figure R4.1 below shows the move profile generated by a +Find Home command when you use the Home Input without the Backplace_Proximity_Bit.

1) Acceleration from the configured Starting Speed to the Programmed Speed
2) Run at the Programmed Speed until the Home Input activates
3) Deceleration to the Starting Speed and stop, followed by a two second delay.
4) Acceleration to the Programmed Speed opposite to the requested direction.
5) Run opposite the requested direction until the Home Input transitions from Active to Inactive
6) Deceleration to the Starting Speed and stop, followed by a two second delay.
7) Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from inactive to active.

If the Home Input is active when the command is issued, the move profile begins at step 5 above.
Homing Profiles (continued)

Profile with Network Backplace_Proximity_Bit

Figure R4.2 below shows the move profile generated by a +Find Home command when you use the Home Input with Network Backplace_Proximity_Bit.

Figure R4.2 Homing with Proximity

1) Acceleration from the configured Starting Speed to the Programmed Speed
2) Run at the Programmed Speed
3) Ignores the Home Input because Backplace_Proximity_Bit has not made a 0→1 transition.
4) Deceleration towards the Starting Speed when the Backplace_Proximity_Bit transitions from 0 to 1. The axis will stop as soon as the Home Input becomes active.
5) The Starting Speed is the minimum speed the profile will run at. If the axis decelerates to the Starting Speed before reaching the Home Input, it will continue at this speed.

Figure R4.2 shows the Backplane Backplace_Proximity_Bit staying active until the Networked Driver reaches its home position. This is valid, but does not have to occur. As stated in step 4, the Networked Driver starts to hunt for the home position as soon and the Backplane Backplace_Proximity_Bit makes a 0→1 transition.
Homing Profiles (continued)

Profile with Overtravel Limit

Figure R4.3 below shows the move profile generated by a +Find Home command when you use:

- CW Overtravel Limit
- Home Input without the Backplace_Proximity_Bit

The profile is generated when you encounter an overtravel limit in the direction of travel. (In this example, hitting the CW limit while traveling in the CW direction.) Hitting the overtravel limit associated with travel in the opposite direction is an Immediate Stop condition. The motor will stop all motion and issue a Home Invalid error to your host.

The Networked Driver will stop with an error if both overtravel limits are activated while the unit is trying to find the home position.

![Figure R4.3 Profile with Overtravel Limit](image)

1) Acceleration from the configured Starting Speed to the Programmed Speed
2) Run at the Programmed Speed
3) Hit CW Limit and immediately stop, followed by a two second delay.
4) Acceleration to the Programmed Speed opposite to the requested direction.
5) Run opposite the requested direction until the Home Input transitions from Active to Inactive
6) Deceleration to the Starting Speed and stop, followed by a two second delay.
7) Return to the Home Input at the configured Starting Speed. Stop when the Home Input transitions from Inactive to Active.

NOTE If the overtravel limit is active when the Find Home Command is active, the profile will begin at step 4.
Modes of Operation

Each AMCI Networked Driver has two operating modes, Configuration Mode and Command Mode. You switch between these modes by changing the state of a single bit in the Network Output Data.

Configuration Mode

Configuration Mode gives you the ability to select the proper configuration for your application without having to set any switches. Typically, the Networked Driver should be configured on every power up. This will help ease system maintenance if you ever need to replace the drive. However, note that the motor will not receive power until the driver is properly configured.

Command Mode

This mode gives you the ability to program and execute stepper moves, and reset errors when they occur. The Networked Driver will always power up in this mode, but a valid configuration must be sent to the Networked Driver before it will apply power to the motor or allow you to issue move commands. The command data formats are described in the following chapter.

Multi-Word Format

Many of the hosts that can be used with the Networked Driver only support 16 bit integers, which limits the range of values from -32,768 to 32,767 or 0 to 65,535. When configuring the Networked Driver, the Starting Speed is transmitted in two separate 16 bit words because this parameter can exceed the sixteen bit range. The table below shows how value is split between the two words.

<table>
<thead>
<tr>
<th>Value</th>
<th>First Word</th>
<th>Second Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>12,345</td>
<td>12</td>
<td>345</td>
</tr>
<tr>
<td>1,234,567</td>
<td>1,234</td>
<td>567</td>
</tr>
</tbody>
</table>

Table R5.1 Multi-Word Format Examples
Output Data Format

The correct format for the Network Output Data when the Networked Driver is in Configuration Mode is shown below.

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Configuration Data</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Configuration Word 0</td>
<td>See below</td>
</tr>
<tr>
<td>1</td>
<td>Configuration Word 1</td>
<td>See below</td>
</tr>
<tr>
<td>2</td>
<td>Starting Speed: Upper Word</td>
<td>Combined value between 1 and 1,999,999 steps/sec.</td>
</tr>
<tr>
<td>3</td>
<td>Starting Speed: Lower Word</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Motor Resolution</td>
<td>200 to 32,767</td>
</tr>
<tr>
<td>5</td>
<td>Hybrid Control Gain</td>
<td>0, 1, 2, or 3</td>
</tr>
<tr>
<td>6</td>
<td>Encoder Resolution</td>
<td>0 to 32,768</td>
</tr>
<tr>
<td>7</td>
<td>Idle Current Reduction</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current (0.1A)</td>
<td>SD17060A2: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Current Loop Gain</td>
<td>1 to 40</td>
</tr>
</tbody>
</table>

Table R5.2 Network Output Data Format: Configuration Mode

Configuration Word 0 Format

<table>
<thead>
<tr>
<th>Configuration Word 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
</tr>
</tbody>
</table>

Bit 15: **Mode** – “1” for Configuration Mode Programming, “0” for Command Mode Programming. Unless a configuration has been saved to Flash memory, the Networked Driver powers up in Command Mode and shows a configuration error. (Hexadecimal value of 6408h.) The Networked Driver will not power the motor or accept commands until a valid configuration is available.

Bit 14: **Disable Antiresonance** – “1” disables the antiresonance feature. “0” enables the anti-resonance feature of the Networked Driver. The Anti-resonance feature will provide smoother operation in most cases. If you are still experiencing resonance problems with this feature enabled, disable this feature and test the machine again.

Bit 13: **Enable Stall Detection** – “0” disables motor stall detection. “1” enables motor stall detection. Only valid when an encoder is used and attached to the motor controlled by the Networked Driver. The Encoder Resolution parameter must also be programmed.

Bit 11: **Use Backplane Proximity** – “0” when the Backplane_Proximity_Bit is not used when homing the Networked Driver. “1” when the Backplane_Proximity_Bit is used when homing the Networked Driver. Note that this bit is not the Backplane_Proximity_Bit, but enables or disables its operation. Do not use the Backplane_Proximity_Bit if you only want to home to the Home Limit Switch. (Leave this bit equal to “0”.)

Bit 10: **Use Encoder** – “0” when Quadrature Encoder is not used. “1” to enable a Quadrature Encoder. You must also configure Inputs 1 and 2 to accept quadrature signals and enter a value in Word 6 for the Encoder Resolution parameter in addition to setting this bit.

Bit 9: **Reserved** – Must equal zero.
Output Data Format (continued)

Configuration Word 0 Format (continued)

Bits 8-6: Input 3 Function – See Table Below
Bits 5-3: Input 2 Function – See Table Below
Bits 2-0: Input 1 Function – See Table Below

<table>
<thead>
<tr>
<th>Bits</th>
<th>Function</th>
<th>Available On</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>General Purpose Input</td>
<td>All Inputs - The input is not used in any functions of the Networked Driver, but its status is reported in the Network Data. This allows the input to be used as a discrete DC input to your controller.</td>
</tr>
<tr>
<td>0 0 1</td>
<td>CW Limit</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 0</td>
<td>CCW Limit</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Start Indexed Move</td>
<td>All Inputs</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Start Indexed Move / Capture Encoder Value</td>
<td>All Inputs, or Input 3 when Inputs 1 & 2 are configured as quadrature encoder inputs. The encoder position value is captured whenever Input 3 transitions. An inactive-to-active state transition will also trigger an Indexed Move if one is pending in the Networked Driver.</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Stop Jog or Registration Move</td>
<td>All Inputs</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Stop Jog or Registration Move & Capture Encoder Value</td>
<td>All Inputs, or Input 3 when Inputs 1 & 2 are configured as quadrature encoder inputs. The encoder position value is captured when Input 3 triggers a controlled stop to a Jog or Registration move.</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Emergency Stop</td>
<td>All Inputs</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Home</td>
<td>All Inputs when using discrete sensors. Input 3 only when using quadrature encoder. Use this configuration value when homing to the Z-Pulse of an encoder.</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Quadrature Encoder Input</td>
<td>Inputs 1 and 2 only. Input 1 is channel A. Input 2 is channel B.</td>
</tr>
</tbody>
</table>

Table R5.3 Configuration Data: Input Function Selections

NOTE: When using a quadrature encoder, you must set bit 10, the Use_Encoder Bit, in addition to programming the inputs to accept quadrature signals. You must also program the Encoder_Resolution parameter in configuration word 6.
Output Data Format (continued)

Configuration Word 1 Format

Bit 15: **Reserved** – State ignored.

Bit 14: **OUT1 Function** – “0” configures Output 1 to be a Fault Output. The output will conduct current until a fault occurs. “1” configures Output 1 to be a general purpose output whose state is determined by a bit in the Command Mode Network Output Data. This output is in an ON state when power is applied to the Networked Driver and it has not yet been configured.

Bit 13: **OUT1 Action on Connection Lost** – “0” will keep Output 1 at its last value. “1” will set the state of Output 1 to the value specified in Bit 12 of this word.

Bit 12: **OUT1 State at Connection Lost** – When bit 13 of this word is set, Output 1 will be set to the state of this bit if the network connection is lost.

Bit 11: **Read Present Configuration** – If this bit is set when you enter Configuration Mode, the Networked Driver responds by placing the present configuration data in the Network Input Data. You cannot write new configuration data to the unit while this bit is set. The format of the Configuration Data is given in the Input Data Format section of this chapter, starting on page 53.

Bit 10: **Save Present Configuration** – An AMCI Networked Driver will store its configuration data to flash memory when this bit makes a 0→1 transition. The validity of the configuration data is checked before being written. If the data is not correct, the transition on this bit is ignored. If the write to flash completes successfully, the Networked Driver will write 16#AAAA into the last word of the Network Input Data and the Status LED will start flashing green. If the write is unsuccessful, the Networked Driver will write 16#EEEE into the last word of the Network Input Data and the Status LED will start flashing red. Once the Networked Driver issues its response to the Save_Present_Configuration command, it stops responding to commands and you must cycle power to the unit. This design decision prevents the Networked Driver from responding to constant save commands from the host controller.

1) This feature was added to support users whose host controllers have very limited functionality. Consider the consequences of using this feature. Adding the code necessary to write down the configuration to a Networked Drive on power up or network connection is fairly straightforward on most PLC based hosts. Adding this code allows you to easily change the configuration in the host and easily configure a new drive if you ever need to swap a drive out of the machine. Sample code from AMCI includes this functionality.

2) The endurance of the Flash memory is a minimum of 10,000 write cycles.

Bit 9: **Binary Input Format** – Set to “0” to have the Motor Position, Encoder Position, and Trapped Encoder Position reported in the **Multi-Word Format** shown in table R6.1 on page 55. Set to “1” to have the Motor Position, Encoder Position, and Trapped Encoder Position reported as signed 32-bit integers with the least significant bits in the lower numbered (even) 16-bit integer word.

Bit 8: **Binary Output Format** – Set to “0” to program the Target Position and Programmed Speed parameters in the **Multi-Word Format** shown in table R6.1 on page 55. Set to “1” to program the Target Position and Programmed Speed parameters in signed 32-bit integer format with the least significant bits in the lower numbered (even) 16-bit integer word.
Output Data Format (continued)

Configuration Word 1 Format (continued)

Bit 7: **Binary_Endian** – Only used when bits 8 and/or 9 (Binary_Output_Format and Binary_Input_Format) are set to “1”. Set to “0” to have 32-bit values transmitted in little endian format. Set to “1” to have the 32-bit values transmitted in big endian format. Siemens processors typically use big endian format, but you should refer to your PLC’s documentation to verify the format used by your processor. See table R6.1, *Position Data Format Examples* found on page 55 for examples of the different formats.

Bits 6 - 3: **Reserved** – Must equal zero.

Bit 2: **IN3_Active_Level** – Determines the active state of Input 3. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

Bit 1: **IN2_Active_Level** – Determines the active state of Input 2. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

Bit 0: **IN1_Active_Level** – Determines the active state of Input 1. Set to “0” if your sensor has Normally Closed (NC) contacts and the input is active when there is no current flow through it. Set to “1” if your sensor has Normally Open (NO) contacts and current flows through the input when it is active.

The AMCI Networked Driver does not report the state of the inputs when they are configured as encoder inputs (ABZ). The driver reports the state of the **Active Level Bit** for the input.

Notes on Starting Speed

Information on the *Multi-Word Format* used when programming the Starting Speed can be found on page 47.

Notes on Hybrid Control Gain

Hybrid_Control_Gain controls the “stiffness” of the shaft at zero speed when using the Hybrid Control feature. With a higher gain setting, the Networked Driver will increase the motor current more quickly to compensate for shaft loading.

Notes on Idle Current Reduction

Changes to the Idle Current only take effect at the *end of the first move after re-configuration.*
Output Data Format (continued)

Notes on Current Loop Gain

Use this feature to maximize high speed performance of your motor. Two tables are given for AMCI motors. If you are not using an AMCI motor, you can use the setting that comes closest to matching the size and torque of your motor. When doing this, power the motor to check the setting. If you hear a white noise hiss coming from the motor when it is not spinning, (subjectively it sounds like AM radio noise), then lower the gain setting until the noise stops.

Assuming a stable line voltage of 115Vac, the following gains can be used for AMCI motors. These gain settings are factory suggestions and are average settings for our motors. Your system may benefit from increasing or decreasing these settings. In general, increase the setting by one or two counts to improve high speed performance or decrease the settings by one or two for quieter low speed operation.

<table>
<thead>
<tr>
<th>MOTOR PART #</th>
<th>MOTOR CURRENT</th>
<th>1 A</th>
<th>1.5 A</th>
<th>2 A</th>
<th>3 A</th>
<th>4 A</th>
<th>5 A</th>
<th>6 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2340-130</td>
<td>1 A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM2340-240</td>
<td>1.5 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-450</td>
<td>2 A</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-850</td>
<td>3 A</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-1100</td>
<td>4 A</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Series)</td>
<td>5 A</td>
<td>12</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Parallel)</td>
<td>6 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Series)</td>
<td>7 A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Parallel)</td>
<td>8 A</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-450</td>
<td>9 A</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-850</td>
<td>10 A</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R5.4 Optional 115 Vac Current Loop Gain Settings

When using the SD31045A2 with a stable 230 Vac line voltage, the following gains can be used for AMCI motors. These gain settings are factory suggestions and are average settings for our motors. Your system may benefit from increasing or decreasing these settings. In general, increase the setting by one or two counts to improve high speed performance or decrease the settings by one or two for quieter low speed operation.

<table>
<thead>
<tr>
<th>MOTOR PART #</th>
<th>MOTOR CURRENT</th>
<th>1 A</th>
<th>1.5 A</th>
<th>2 A</th>
<th>3 A</th>
<th>4 A</th>
<th>4.4 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2340-130</td>
<td>1 A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM2340-240</td>
<td>1.5 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-450</td>
<td>2 A</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-850</td>
<td>3 A</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM34-1100</td>
<td>4 A</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Series)</td>
<td>5 A</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-130 (Parallel)</td>
<td>6 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Series)</td>
<td>7 A</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM23-240 (Parallel)</td>
<td>8 A</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM42-1800</td>
<td>9 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R5.5 Optional 230 Vac Current Loop Gain Settings
Input Data Format

The correct format for the Network Input Data when the Networked Driver is in Configuration Mode is shown below.

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Configuration Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Configuration Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Mirror of Output Data Config Word</td>
</tr>
<tr>
<td>2</td>
<td>Mirror of Starting Speed. (Using the Multi-Word Format described on page 47)</td>
</tr>
<tr>
<td>3</td>
<td>Mirror of Motor Resolution</td>
</tr>
<tr>
<td>4</td>
<td>Mirror of Hybrid_Control_Gain</td>
</tr>
<tr>
<td>5</td>
<td>Mirror of Encoder_Resolution</td>
</tr>
<tr>
<td>6</td>
<td>Mirror of Idle_Current_Reduction</td>
</tr>
<tr>
<td>7</td>
<td>Mirror of Motor Current (0.1 amp)</td>
</tr>
<tr>
<td>8</td>
<td>Mirror of Current Loop Gain</td>
</tr>
</tbody>
</table>

Table R5.6 Network Input Data Format: Configuration Mode

Configuration Word 0 Format

When the Configuration data is valid and accepted, this word mirrors the value of the Configuration Word 0 written to the Networked Driver. When the Networked Driver is not configured, or the data written to it is invalid, then this word has the same format of Status Word 0 when the Networked Driver is in Command Mode. This format is explained in the Status Word 0 Format section starting on page 69. On power up, the value of this word will be 6408h if the Networked Driver does not have a valid configuration in its flash memory.

NOTE

When in Configuration Mode, bit 13 of word 0 is set to “1” when stall detection is enabled. When in Command Mode, bit 13 of word 0 is set to “1” when there is a configuration error. When using the state of bit 13 of word 0 in your logic, always include the state of bit 15 of word 0 to assure that you are only acting on the bit when in the proper mode.

Invalid Configurations

The following configurations are invalid:

1) Setting any of the reserved bits in the configuration words.
2) Setting any parameter to a value outside of its valid range. This includes setting the Lower Word of the Starting Speed to a value greater than 999.
3) You configure two or more inputs to have the same function, such as two CW Limit Switches.
4) You configure the Networked Driver to use an encoder, but you do not configure Inputs 1 and 2 as Quadrature Encoder Inputs.
5) You configure the Networked Driver to use an encoder, but you do not set the Encoder_Resolution value in word 6.
6) Setting the Enable_Stall_Detection Bit without configuring the Networked Driver to use an encoder.
Notes
This chapter covers the formats of the Network Output Data used to command the SD17060A2 or SD31045A2 as well as the formats of the Network Input Data that contains the responses from the device. The Networked Driver requires ten 16-bit words (20 bytes) for Output Data as well as ten 16-bit words for Input Data. Note that the Networked Driver, when in its factory default state, will power up in Configuration Mode. The Configuration Mode data format is described in the previous chapter.

Command Mode Data Format

Multi-Word Format

A Networked Driver requires twenty bytes of Output Data as well as twenty bytes of Input Data. The data to and from the Networked Driver is typically represented as ten 16-bit (single) integers. Sixteen bit integers support a range of values from -32,768 to 32,767 or 0 to 65,535. When issuing commands to the Networked Driver, there are several parameters that are larger than sixteen bits. These parameters are:

- Target Position
- Stopping Distance
- Position Preset Value
- Programmed Speed
- Minimum Registration Move Distance
- Encoder Preset Value

Likewise, when reading data back from a Networked Driver while it is in Command Mode, there are values that are larger than sixteen bits. These data values are:

- Motor Position
- Encoder Position
- Captured Encoder Position

By default, these thirty-two bit parameters and data values are written to and read from the Networked Driver using the multi-word format described below. When configuring the Networked Driver, it is possible to program it to use a 32-bit double integer format instead of the custom multi-word format.

There are three configuration bits that control the data format when the Networked Driver is in command mode. The **Binary_Output_Format Bit**, controls the format of the programmable parameters written to the Networked Driver when issuing commands. The **Binary_Input_Format Bit**, controls the format of the data values written to the host controller by the Networked Driver. When either of these parameters are set to their 32-bit signed integer format settings, the **Binary_Endian** bit determines if the 32-bit values are stored and transmitted least significant bits first or most significant bits first. Examples of the formats are given below.

<table>
<thead>
<tr>
<th>Value</th>
<th>Multi-Word Format</th>
<th>32 bit Signed Integer Little Endian Format</th>
<th>32 bit Signed Integer Big Endian Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Word</td>
<td>Second Word</td>
<td>First Word</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
<td>16#000C</td>
</tr>
<tr>
<td>-12</td>
<td>0</td>
<td>-12</td>
<td>16#FFF4</td>
</tr>
<tr>
<td>1,234,567</td>
<td>1,234</td>
<td>567</td>
<td>16#D687</td>
</tr>
<tr>
<td>-7,654,321</td>
<td>-7,654</td>
<td>-321</td>
<td>16#344F</td>
</tr>
</tbody>
</table>

Table R6.1 Position Data Format Examples

NOTE

The range of values when using the multi-word format is -32,768,000 to 32,767,999. When used in continuous rotation applications, such as control of a conveyor belt, it is possible to overflow these values. When any of the three position values overflow, the value of the associated data words will become indeterminate. AMCI strongly suggests using the signed 32-bit integer format for continuous rotation applications.
Command Mode Data Format

Command Bits Must Transition

Commands are only accepted when the command bit makes a 0→1 transition. The easiest way to do this is to write a value of zero into the Command Word 0 before writing the next command.

This condition also applies when switching from Configuration Mode to Command Mode. If a bit is set in Configuration Word 0 while in Configuration Mode and you switch to Command Mode with the same bit set, the command will not occur because the bit must transition between writes to the unit.

Output Data Format

The following table shows the format of the output network data words when writing command data to the SD17060A2 or SD31045A2.

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
</tr>
<tr>
<td>2</td>
<td>Command Parameters</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Figure R6.1 Command Data Format

Command Word 0

<table>
<thead>
<tr>
<th>Command Word 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
</tr>
<tr>
<td>MODE</td>
</tr>
</tbody>
</table>

Figure R6.2 Command Word 0 Format

Bit 15: Mode>Select – “1” for Configuration Mode Programming “0” for Command Mode Programming. A factory default SD17060A2 or SD312045E2 powers up in Command Mode and shows a configuration error. (Hexadecimal value of 6408h.) The Networked Driver will not power the motor or accept commands until a valid configuration is written to it.

Bit 14: Preset Encoder – When set to “1” the Networked Driver will preset the Encoder Position to the value stored in Output Words 2 and 3.
Command Word 0 (continued)

Bit 13: **Run_Assembled_Move** – When set to “1” the Networked Driver will run the Assembled Move already stored in memory.

- **Assembled_Move_Type** – Command Word 1, Bit 9: This bit determines the type of move that is run. When this bit equals “0”, a Blend Move is run. When this bit equals “1”, a Dwell Move is run. When starting a Dwell Move, the Dwell Time is programmed in word 9 of the Command Data. The value is programmed in milliseconds and can range from 0 to 65,536.

- **Reverse_Blend_Direction** – Command Word 1, Bit 4: This bit is used to determine the direction that the Blend Move will be run in. When this bit equals “0”, the Blend Move runs in the clockwise direction. When this bit equals “1”, the Blend Move is run in the counter-clockwise direction.

Bits 11 & 12: **Program_Assembled & Read_Assembled_Data** – These bits are used to program the segments of an Assembled Move before the move can be run. Their use is explained in the Assembled Move Programming section of this manual starting on page 37.

Bit 10: **Reset_Errors** – When set to “1” the Networked Driver will clear all existing errors and reset the Move_Complete bit.

Bit 9: **Preset_Position** – When set to “1” the Networked Driver will preset the Motor Position to the value stored in Output Words 2 and 3 and reset the Move_Complete bit in the Network Input Data.

Bit 8: **Jog_CCW** – When set to “1” the Networked Driver will run a Jog Move in the counter-clockwise direction. The full explanation of a CW/CCW Jog Move can be found starting on page 29.

- **Registration_Move** – Command Word 1, Bit 7: When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

- **Enable_Electronic_Gearing** – Command Word 1, Bit 6: When this bit equals “1” the Networked Driver will switch its operation to Electronic Gearing mode as described on page 40. While in this mode, the two Jog Move bits are used to enable motor motion. One of these two bits must equal “1” before the motor will follow a change in encoder position.

Bit 7: **Jog_CW** – When set to “1” the Networked Driver will run a Jog Move in the clockwise direction. The full explanation of a CW/CCW Jog Move can be found starting on page 29.

- **Registration_Move** – Command Word 1, Bit 7: When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

- **Enable_Electronic_Gearing** – Command Word 1, Bit 6: When this bit equals “1” the Networked Driver will switch its operation to Electronic Gearing mode as described on page 40. While in this mode, the two Jog Move bits are used to enable motor motion. One of these two bits must equal “1” before the motor will follow a change in encoder position.

Bit 6: **Find_Home_CCW** – When set to “1” the Networked Driver will attempt to move to the Home Limit Switch in the counter-clockwise direction. A full explanation of homing can be found in the Homing an AMCI Networked Driver reference chapter starting on page 43.

Bit 5: **Find_Home_CW** – When set to “1” the Networked Driver will attempt to move to the Home Limit Switch in the clockwise direction. A full explanation of homing can be found in the Homing an AMCI Networked Driver reference chapter starting on page 43.

Bit 4: **Immediate_Stop** – When set to “1” the Networked Driver will stop all motion without deceleration. The Motor Position value will become invalid if this bit is set during a move. Setting this bit when a move is not in progress will not cause the Motor Position to become invalid.
Command Word 0 (continued)

Bit 3: Resume_Move – Set to “1” to resume a move that you previously placed in a hold state. Use of the Resume_Move and Hold_Move bits can be found in the *Controlling Moves In Progress* section of this manual starting on page 39. Note that a move in its hold state does not need to be resumed. The move is automatically cancelled if another move is started in its place.

Bit 2: Hold_Move – Set to “1” to hold a move. The move will decelerate to its programmed Starting Speed and stop. The move can be completed by using the Resume_Move bit. Use of the Hold_Move and Resume_Move bits can be found in the *Controlling Moves In Progress* section of this manual starting on page 39.

Bit 1: Relative_Move – Set to “1” to perform a Relative Move using the data in the rest of the Command Data. The full explanation of a Relative Move can be found starting on page 27.

Bit 0: Absolute_Move – Set to “1” to perform an Absolute Move using the data in the rest of the Command Data. The full explanation of an Absolute Move can be found starting on page 28.

Command Word 1

![Command Word 1 Format](image)

Bit 15: Enable_Driver – “0” to disable the motor current, “1” to enable motor current. A valid configuration must be written to the Networked Driver before the driver can be enabled.

Bit 14: Reserved – Must equal “0”.

Bit 13: OUT1_Set_State – When the output is configured as a general purpose output point instead of the Fault Output, this bit controls the state of the output. When this bit equals a “1”, the output is on and conducts current.

Bit 12: Reserved – Must equal “0”.

Bit 11: Backplace_Proximity_Bit – When the Networked Driver is configured to use the Backplace_Proximity_Bit, the unit will ignore the state of the Home Input as long as this bit equals “0”. This bit must equal “1” before a transition on the Home Input can be used to home the machine. Further information on using the Backplace_Proximity_Bit can be found in the *Profile with Network Backplace_Proximity_Bit* section found on page 45.

Bit 10: Clear_Driver_Fault – If this bit is set during a Reset Errors Command, (Command Word 0 Bit 10) the Networked Driver will attempt to clear driver errors such as a missing interlock jumper or motor short fault. Note that the driver must be disabled (Command Word 1, Bit 15 = 0), when using this command.

Bit 9: Assembled_Move_Type – When this bit equals “0”, a Blend Move is started when the Run Assembled Move bit, (Command Word 1, Bit 13) makes a 0→1 transition. When this bit equals “1”, a Dwell Move is started on the transition. The direction of a Blend Move is controlled by the Reverse_Blend_Direction bit, (Command Word 1, Bit 4). In a Dwell Move, the Dwell Time between segments is programmed in Word 9 of the command data.

Bit 8: Indexed_Command – If this bit is set when a move command is issued, the Networked Driver will not run the move immediately, but will instead wait for an inactive-to-active transition on an input configured as a Start Indexer Move input.
Command Word 1 (continued)

- **Bit 7: Registration_Move** – When this bit equals “0”, and a Jog Move command is issued, it will run as a standard Jog Move. When this bit equals “1” and a Jog Move command is issued, the move will run as a Registration Move.

- **Bit 6: Enable_Electronic_Gearing** – Set to “1” to put the Networked Driver in Electronic Gearing mode. Set to “0” for normal operation. A full description of Electronic Gearing mode starts on page 23.

- **Bit 5: Save_Assembled_to_Flash** - Set this bit to save the data of a programmed Assembled Move. This bit is only acted upon this way when the Program_Assembled bit (Command Word 0, Bit 11 makes a 1→0 transition as explained in the Assembled Move Programming section of this manual starting on page 37.

 OR

- **Motor_Current_Key2** - See Description of Motor Current Keys on the following page.

- **Bit 4: Reverse_Blend_Direction** – When you command a Blend Move to run, this bit determines the direction of rotation. Set to “0” for a clockwise Blend Move, ‘1’ for a counter-clockwise Blend Move.

- **Bit 3: Hybrid_Control** – Set to “0” to operate the Networked Driver as a standard stepper system. Set to “1” to enable Hybrid Control. Hybrid Control is explained starting on page 16.

- **Bit 2: Encoder_Registration_Move** – This bit is used with the Relative_Move (Command Word 0, bit 1) or Absolute_Move (Command Word 0, bit 0) bits. Set this bit to “1” to command an Encoder Registration Move. This move will run until the encoder count reaches the programmed relative or absolute value and then the move will begin to decelerate and stop. Must equal “0” for normal relative or absolute moves. A full description of an Encoder Registration Move can be found starting on page 15.

- **Bit 1: Motor_Current_Key1** – See the description below.

- **Bit 0: Motor_Current_Key0** – See the description below.

Description of Motor Current Keys

With the exceptions of the CW/CCW Registration Move commands and Run Assembled Move command, it is possible to change the motor current “on the fly” while in Command Mode. To do this, place the new motor current in Word 8 and set the key bits as shown below.

- Control Word 2: Bit 5, (Key2) – “1”
- Control Word 2: Bit 1, (Key1) – “0”
- Control Word 2: Bit 0, (Key0) – “1”

This feature does not work with CW/CCW Registration Move commands because Words 8 and 9 are used to store the registration distance. This feature does not work with the Run Assembled Move command because motor current can be set when you program the move segments. For all other commands, the Networked Driver will respond by changing the motor current and writing the new value into the Network Input Data, Word 8. Once the motor current has been set, reset the key bits to all zeros to prevent further changes to the motor current. The motor current can be changed at any time, including during a move.

NOTE

Setting the motor current to an invalid value does not force a command error. The value will be ignored and the Networked Driver will use the motor current value programmed while in Configuration Mode. Invalid values are:

- Value whose last digit is not even
- Values outside the range of 1.0 to 6.0 amps on the SD17060A2
- Values outside the range of 1.0 to 4.4 amps on the SD31045A2
Command Blocks

The following section lists the output data format for the sixteen different commands.

Absolute Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0001</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Abs. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Abs. Target Position: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60 SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.2 Absolute Move Command Block

Relative Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0002</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Rel. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Rel. Target Position: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60 SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.3 Relative Move Command Block
Command Blocks (continued)

Hold Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0004</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.4 Hold Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Resume Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0008</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Sec</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Sec</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/Sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60 SD31045A2: 10 to 44 Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.5 Resume Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command. This is typically the case when resuming a move, the words are listed as “Unused” to highlight that the target position of a held move cannot be changed when the move is resumed.
Command Blocks (continued)

Immediate Stop

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0010</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.6 Immediate Stop Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Find Home CW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0020</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.7 Find Home CW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Find Home CCW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0040</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60 SD31045A2: 10 to 44 Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.8 Find Home CCW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Jog CW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080</td>
</tr>
</tbody>
</table>
| 1 | Command Word 1 | | See pg. 58
| | Bits 7 & 6 must equal “00”| | |
| 2 | Unused | | See Note Below |
| 3 | Unused | | See Note Below |
| 4 | Programmed Speed: Upper Word | Steps/Second | Combined value between the Configured Starting Speed and 2,999,999 |
| 5 | Programmed Speed: Lower Word | Steps/Second | Combined value between the Configured Starting Speed and 2,999,999 |
| 6 | Acceleration | Steps/ms/sec | 1 to 5000 |
| 7 | Deceleration | Steps/ms/sec | 1 to 5000 |
| 8 | Motor Current | 0.1 A | SD17060A2: 10 to 60 SD31045A2: 10 to 44 Even numbers only. |
| 9 | Acceleration Jerk | | 0 to 5000 |

Table R6.9 Jog Move CW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Registration Move CW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bits 7 & 6 must equal “10”</td>
</tr>
<tr>
<td>2</td>
<td>Stopping Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Stopping Distance: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Min. Reg. Move Distance: Upper Word</td>
<td></td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>9</td>
<td>Min. Reg. Move Distance: Lower Word</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R6.10 Registration Move CW Command Block

Jog CCW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bits 7 & 6 must equal “00”</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.11 Jog CCW Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Command Blocks (continued)

Registration Move CCW

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bits 7 & 6 must equal “10”</td>
</tr>
<tr>
<td>2</td>
<td>Stopping Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Stopping Distance: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps per Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Min. Reg. Move Distance: Upper Word</td>
<td>Steps</td>
<td>Combined value between 0 and +8,388,607</td>
</tr>
<tr>
<td>9</td>
<td>Min. Reg. Move Distance: Lower Word</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R6.12 Registration Move CCW Command Block

Encoder Follower Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0080 or 16#0100</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 6 must equal “1”</td>
</tr>
<tr>
<td>2</td>
<td>Electronic Gearing Numerator</td>
<td></td>
<td>1 to 255</td>
</tr>
<tr>
<td>3</td>
<td>Electronic Gearing Denominator</td>
<td></td>
<td>1 to 255</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.13 Encoder Follower Move Command Block
Command Blocks (continued)

Preset Position

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0200</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Position Preset Value: Upper</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td></td>
<td>Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Position Preset Value: Lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.14 Preset Position Command Block

Unused words are ignored by the Network Driver and can be any value, including parameter values in the previous command.

Presetting the position will also reset the Move_Complete status bit in the Network Input Data.

Reset Errors (including Driver Faults)

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58, Set bit 10 to clear driver faults</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.15 Reset Errors Command Block

Unused words are ignored by the Network Driver and can be any value, including parameter values in the previous command.

Resetting errors will also reset the Move_Complete status bit in the Network Input Data.
Command Blocks (continued)

Run Assembled Move

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#2000</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused with Blend Move</td>
<td>milliseconds</td>
<td>0 to 65,535</td>
</tr>
<tr>
<td></td>
<td>Dwell Time with Dwell Move</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R6.16 Run Assembled Move Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Preset Encoder Position

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#4000</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Encoder Preset Value: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Encoder Preset Value: Lower Word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.17 Preset Encoder Position Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.
Programming Blocks

The following blocks are used to program an Assembled Move. Both of the moves, Blend Move, and Dwell Move, are programmed exactly the same way. The bit configuration used when starting the move determines which type of Assembled Move is run.

First Block

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0800</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.18 Assembled Move First Programming Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values from the previous command.

Once the first block is transmitted, the Networked Driver responds by setting bits 8 and 9 in Status Word 0. (See Status Word 0 Format starting on page 69.) Once these are set, you can then start transmitting Segment Blocks.

Segment Block

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#1800</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>See pg. 58</td>
</tr>
<tr>
<td>2</td>
<td>Rel. Target Position: Upper Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>3</td>
<td>Rel. Target Position: Lower Word</td>
<td>Steps</td>
<td>Combined value between –8,388,608 and +8,388,607</td>
</tr>
<tr>
<td>4</td>
<td>Programmed Speed: Upper Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>5</td>
<td>Programmed Speed: Lower Word</td>
<td>Steps/Second</td>
<td>Combined value between the Configured Starting Speed and 2,999,999</td>
</tr>
<tr>
<td>6</td>
<td>Acceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>7</td>
<td>Deceleration</td>
<td>Steps/ms/sec</td>
<td>1 to 5000</td>
</tr>
<tr>
<td>8</td>
<td>Motor Current</td>
<td>0.1 A</td>
<td>SD17060A2: 10 to 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD31045A2: 10 to 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even numbers only.</td>
</tr>
<tr>
<td>9</td>
<td>Acceleration Jerk</td>
<td></td>
<td>0 to 5000</td>
</tr>
</tbody>
</table>

Table R6.19 Assembled Move Segment Programming Block

Note that each Segment Block starts with bits 11 and 12 set in the Command Word 0 word (16#1800). When the Networked Driver sees bit 12 of Command Word 0 set, it will accept the block and reset bit 9 in Status Word 0. When your program sees this bit reset, it must respond by resetting bit 12 of Command Word 0. The Networked Driver will respond to this by setting bit 9 in Status Word 0 and the next Segment Block can be written to the Networked Driver. You can write a maximum of sixteen Segment Blocks for each Assembled Move.
Input Data Format

The correct format for the Network Input Data when the Networked Driver is in Command Mode is shown below.

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Command Mode Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Status Word 0</td>
</tr>
<tr>
<td>1</td>
<td>Status Word 1</td>
</tr>
<tr>
<td>2</td>
<td>Motor Position: Upper Word</td>
</tr>
<tr>
<td>3</td>
<td>Motor Position: Lower Word</td>
</tr>
<tr>
<td>4</td>
<td>Encoder Position: Upper Word</td>
</tr>
<tr>
<td>5</td>
<td>Encoder Position: Lower Word</td>
</tr>
<tr>
<td>6</td>
<td>Trapped Encoder Position: Upper Word</td>
</tr>
<tr>
<td>7</td>
<td>Trapped Encoder Position: Lower Word</td>
</tr>
<tr>
<td>8</td>
<td>Programmed Motor Current (X10)</td>
</tr>
<tr>
<td>9</td>
<td>Value of Acceleration Jerk Parameter</td>
</tr>
</tbody>
</table>

Table R6.20 Network Input Data Format: Command Mode

Format of Position Data Values

The format of the Motor Position, Encoder Position, and Trapped Encoder Position values is controlled by the Binary_Input_Format bit in the configuration data written to the Networked Driver. (See *Configuration Word 1 Format*, bit 9 starting on page 50.) When the Binary_Input_Format bit equals “0”, the position values are reported with the bottom three digits of the value in the lower word (000 - 999) and the remaining digits in the upper word. See *Multi-Word Format* on page 55 for an explanation of this format. When the Binary_Input_Format bit equals “1”, the position values are reported as 32-bit signed integers. The endian of the 32 bit values is controlled by the Binary_Endian bit. (See *Configuration Word 1 Format*, bit 7 starting on page 50.)

The range of values when using the multi-word format is -32,768,000 to 32,767,999. When used in continuous rotation applications, such as control of a conveyor belt, it is possible to overflow these values. When any of the three position values overflow, the value of the associated data words will become indeterminate. AMCI strongly suggests using the signed 32-bit integer format for continuous rotation applications.

Status Word 0 Format

Status Word 0

- **Bit 15**: **Mode_Flag** – Set to “1” if in Configuration Mode, and set to “0” if in Command Mode. The Networked Driver powers up in Command Mode and shows a configuration error. The Networked Driver will not power the motor or accept commands until a valid configuration is written to it.

- **Bit 14**: **Module_OK** – “1” when the Networked Driver is operating without a fault, “0” when an internal fault condition exists.

![Figure R6.4 Command Mode: Status Word 0 Format](image-url)
Input Data Format (continued)

Bit 13: *Configuration Error* – “1” on power up before a valid configuration has been written to the Networked Driver or after any invalid configuration has been written to the driver. “0” when the Networked Driver has a valid configuration written to it.

When in Command Mode, bit 13 of word 0 is set to “1” when there is a configuration error. When in Configuration Mode, bit 13 of word 0 is set to “1” when stall detection is enabled. When using the state of bit 13 of word 0 in your logic, always include the state of bit 15 of word 0 to assure that you are only acting on the bit when in the proper mode.

Bit 12: *Command Error* – “1” when an invalid command has been written to the Networked Driver. This bit can only be reset by the Reset_Errors bit, Command Word 0, Bit 10. Note that setting the motor current to a value outside the range of 1.0 to 6.0 amps on the SD17060A2, or 1.0 to 4.4 amps on the SD31045A2, does not force a command error. The driver simply ignores the new value and uses the value programmed when the unit was in Configuration Mode.

Bit 11: *Input Error* – “1” when:
- Emergency Stop input has been activated
- Either of the End Limit Switches activates during any move operation except for homing
- Starting a Jog Move in the same direction as an active End Limit Switch
- If the opposite End Limit Switch is reached during a homing operation.

This bit is reset by a *Reset Errors (including Driver Faults)* command. The format of the command is given on page 66.

Bit 10: *Position Invalid* – “1” when:
- A configuration is written to the Networked Driver
- The motor position has not been preset and the machine has not been homed
- The machine has not been homed
- The Network Connection has been lost and re-established
- An Immediate or Emergency Stop has occurred
- An End Limit Switch has been reached
- A motor stall has been detected.

Absolute moves cannot be performed while the position is invalid.

Bit 9: *Waiting For Assembled Segment* – The Networked Driver sets this bit to tell the host that it is ready to accept the data for the next segment of your assembled move profile. Its use is explained in the *Assembled Move Programming* section of this manual starting on page 37.

Bit 8: *In Assembled Mode* – The Networked Driver sets this bit to signal the host that it is ready to accept assembled move profile programming data. Its use is explained in the *Assembled Move Programming* section of this manual starting on page 37.

Bit 7: *Move Complete* – Set to “1” when the present Absolute, Relative, Jog, Registration, or Assembled Move command completes without error. This bit is reset to “0” when the next move command is written to the Networked Driver, when the position is preset, or a Reset Errors command is issued to the unit. This bit is also set along with the Command_Error bit (Bit 12 of this word), when any Jog Move or Registration Move parameters are outside of their valid ranges. This bit is not set on a command error for any other type of command. Finally, this bit is not set at the end of a homing operation.

Bit 6: *Decelerating* – Set to “1” when the present move is decelerating. Set to “0” at all other times.

Bit 5: *Accelerating* – Set to “1” when the present move is accelerating. Set to “0” at all other times.

Bit 4: *At Home* – Set to “1” when a homing command has completed successfully, “0” at all other times.
COMMAND MODE DATA FORMAT

Input Data Format (continued)

Status Word 0 Format (continued)

Bit 3: Stopped – Set to “1” when the motor is not in motion. Note that this is stopped for any reason, not just a completed move. For example, an Immediate Stop command during a move will set this bit to “1”, but the Move_Complete Bit, (bit 7 above) will not be set.

Bit 2: In_Hold_State – Set to “1” when a move command has been successfully brought into a Hold State. Hold States are explained in the Controlling Moves In Progress section starting on page 22.

Bit 1: Moving_CCW – Set to “1” when the motor is rotating in a counter-clockwise direction.

Bit 0: Moving_CW – Set to “1” when the motor is rotating in a clockwise direction.

Status Word 1 Format

Status Word 1

```
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
```

<table>
<thead>
<tr>
<th>Bit 15: Drive_Is_Enabled – Set to “1” when the motor driver section of the Networked Driver is enabled and current is available to the motor. Set to “0” when the motor driver section is disabled. If this bit is set to “1”, the motor current remains present when an E-Stop input is active. Motor current is removed if there is a Driver_Fault (Bit 7 below) regardless of the state of this bit. Motor current is also removed if the motor is idle and Idle Current Reduction is programmed to its To 0% setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 14: Stall_Detected – Set to “1” when a motor stall has been detected.</td>
</tr>
<tr>
<td>Bit 13: OUT1_State – Present actual state of Output 1. When this bit is set to “1”, the output is in its on state and conducts current.</td>
</tr>
<tr>
<td>Bit 12: Reserved Bit – Will always equal zero.</td>
</tr>
<tr>
<td>Bit 11: Heartbeat_Bit – This bit will change state approximately every 500 milliseconds. Monitor this bit to verify that the unit and network connection are operating correctly. Note that this bit is only available while the Networked Driver is in Command Mode.</td>
</tr>
<tr>
<td>Bit 10: Limit_Condition – This bit is set if an End Limit Switch is reached during a move. This bit will be reset when the Limit Switch changes from its active to inactive state, or when a Reset Errors Command is issued.</td>
</tr>
<tr>
<td>Bit 9: Invalid_Jog_Change – Set during a Jog Move if parameters are changed to invalid values. Parameters that can be changed during a Jog Move are Programmed Speed, Acceleration, and Deceleration. Set while in Electronic Gearing mode if the Numerator or Denominator are set outside their range of 1 to 255.</td>
</tr>
<tr>
<td>Bit 8: Motion_Lag – When using the Hybrid Control feature, this bit will equal “1” if the actual rotor position is more than 360° behind the commanded position. This indicates a heavily loaded motor and the encoder position should be monitored for a stalled condition.</td>
</tr>
</tbody>
</table>
Input Data Format (continued)

Status Word 1 Format (continued)

- **Bit 7**: **Driver_Fault** – If the driver section of the Networked Driver is enabled, this bit will be a “1” during a Overtemperature Fault, a Short Circuit Fault, or when the Interlock Jumper is missing. This fault can be cleared by issuing a *Reset Errors (including Driver Faults)* programming block with the *Clear_Driver_Fault* bit, *(Command Word 1, bit 10)* set to “1”. For additional information, see *Notes on Clearing a Driver Fault* on page 73. Note that this bit is not set if the Interlock Jumper is missing when power is applied to the driver.

- **Bit 6**: **Connection_Was_Lost** – If the physical network connection is lost at any time, this bit will be set when the connection is re-established. The Input_Error bit will also be set. Note that this bit is not set if the communication loss is on the protocol level, not the physical level.

- **Bit 5**: **Reserved** – This bit will always equal zero.

- **Bit 4**: **Temperature_Above_90C** – This bit is set to “1” when the processor internal temperature exceeds 90°C. At this point, the heatsink temperature is typically above 80°C. If this bit trips often and you want to lower the operating temperature of the unit, consider changing how the device is mounted, or installing a fan to force additional airflow through the device.

- **Bit 3**: **Reserved** – This bit will always equal zero.

- **Bit 2**: **IN3_Active** – “1” when Input 3 is in its active state. The active state of the input is programmed as explained in the *Configuration Word 1 Format* section starting on page 50.

- **Bit 1**: **IN2_Active** – “1” when Input 2 is in its active state. The active state of the input is programmed as explained in the *Configuration Word 1 Format* section starting on page 50.

- **Bit 0**: **IN1_Active** – “1” when Input 1 is in its active state. The active state of the input is programmed as explained in the *Configuration Word 1 Format* section starting on page 50.

NOTE

The Networked Driver does not report the state of the inputs when they are configured as encoder inputs (ABZ). The driver reports the state of the *Active Level Bit* for the input which is set in Configuration Mode.
Notes on Clearing a Driver Fault

A Driver Fault occurs when there is an over temperature condition, a short circuit condition in the motor, or the Interlock jumper is missing.

When a Driver Fault occurs, the driver sets bit 7 of Status Word 1 in the Network Input Data. (See Status Word 1 Format on page 71 for a full description of Status Word 1.) Once you have cleared the fault condition, you can reset the Driver Fault with the following Command Block:

Reset Driver Fault

<table>
<thead>
<tr>
<th>PROFINET Word</th>
<th>Function</th>
<th>Units</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Word 0</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>1</td>
<td>Command Word 1</td>
<td></td>
<td>16#0400</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td>See Note Below</td>
</tr>
</tbody>
</table>

Table R6.21 Reset Driver Fault Command Block

Unused words are ignored by the Networked Driver and can be any value, including parameter values in the previous command.

Once the command block is accepted by the Networked Driver, it will respond by resetting bit 7 in Status Word 1 of the Network Input Data.

After this procedure, there will still be no current to the motor. This is because the Enabled_Driver Bit, (bit 15 of Command Word 1 in the Network Output Data), must be reset when writing down the Reset Driver Fault Command Block. Setting this bit in the next command block will re-enable the motor.
Notes
GENERAL INSTALLATION GUIDELINES

This chapter gives general information on installing electronic controls in an industrial environment including the importance of proper wiring, grounding, and surge suppression. If you are responsible for installing an SD17060A2 or SD31045A2, make sure you are familiar with these practices and follow them when installing the unit.

These instructions assume a solidly grounded system, which is used in a vast majority of modern industrial systems. As defined by the IEEE, a solidly grounded system is one in which the neutral of a generator, power transformer, or grounding transformer is directly connected to the system ground or earth. The installation of ungrounded systems is not covered by these instructions.

This chapter is presented as a tool in the hopes of avoiding common installation problems. It is not a substitute for the safety practices called out in local electrical codes or, in the United States, the National Electrical Code published by the National Fire Protection Association. If any conflicts exist, local and national codes must be followed. It is the responsibility of the user to determine what installation practices must be followed to conform to all local and national codes.

Safety is the single most important objective of any electrical installation. The system must be safe to use and it must be able to detect unsafe conditions and remove power when these conditions occur.

The second important objective of an electrical installation is proper and consistent operation. Proper operation can be achieved through:

- Proper Grounding
- Suppression of electrical noise generated by the machine.
- Suppression of electrical noise coming in from the environment. (Other machines, power surges, etc.)

Grounding

Proper grounding is the single most important consideration for a safe installation. Proper grounding also ensures that unwanted electrical currents, such as those induced by electromagnetic noise, will be quickly shunted to ground instead of flowing through the machine.

Earth ground connections on electronic controls are one of two types.

- **Protective Earth Connection:** Point that must be tied to Earth for the safe operation of the device. (Protection against electric shock should the device be damaged.)
- **Functional Earth Connection:** Point that must be tied to Earth to improve noise immunity of the device.

For all AMCI Networked Drivers, the Protective Earth Connection is any mounting surface of the unit. (The SD31045A2 Drivers also have a grounding lug on their heatsinks.) The Functional Earth Connection of the Networked Drivers is the ground terminal (GND) on the power connector.

Grounding Electrode System

The Grounding Electrode System is the common name for the building's earth ground infrastructure. This system defines earth-ground potential within a building and is the central ground for all electrical equipment.

Ground Bus

AMCI strongly suggests the use of a ground bus in each system enclosure. The ground bus is simply a metal bar with studs or tapped holes for accepting grounding connections in the enclosure. The ground bus is the only component in the enclosure that is directly connected to your Grounding Electrode System. Therefore, the ground bus becomes the central grounding point for the enclosure and its equipment.
Grounding (continued)

Grounding Electrode Conductor

Connection of the ground bus to the Grounding Electrode System is made with the Grounding Electrode Conductor. The Grounding Electrode Conductor should be the shortest length of stranded wire or braid possible. The American NEC allows a length of up to six feet, but shorter is better. A shorter length will help shunt high-frequency noise to the Grounding Electrode System.

In extremely noisy environments, it is sometimes advisable to run two wires from the ground bus to the GES. The length of these two wires should differ by 20% to 30% so they offer different impedances to the noise frequencies being shunted to earth ground.

The minimum sizes for the Grounding Electrode Conductor are #8 AWG stranded wire or 1" braid, but larger sizes may be needed depending on the total ground fault current your system can generate. The actual size is determined by the size of the largest conductor in the system.

The American NEC allows the use of a solid wire for the Grounding Electrode Conductor but this should be avoided. High frequency currents (electrical noise) travel along the surface of a conductor. Heavy gauge stranded wire and braid both have large surface areas, solid conductors do not. Therefore, stranded wire and braid have a much lower effective resistance to electrical noise.

Grounding Wires

Grounding wires are used to connect the pieces of equipment to your ground bus. AMCI strongly suggests using #8 AWG stranded wire or 1" wire braid for all grounding connections. The American NEC allows the use of solid wire for grounding wires but this should be avoided for the same reasons they should not be used for the Grounding Electrode Conductor.

Avoiding Grounding Problems

As stated before, there are two reasons to properly ground a system. The first reason is to protect human life. A properly designed grounding system will be able to detect potential shock currents and remove power from the system. The second reason is to improve system reliability by shunting electrical noise currents to earth instead of allowing them to flow through the system where they can disrupt the operation of electronic controls.

The entire grounding system, even though conductive, is not meant to carry current except under fault conditions.

Under normal operating conditions, the grounding system should not carry any current at all.

Ground Fault Interrupt (GFI) circuits depend on this condition to work correctly. Any ground current flowing through a GFI is considered a fault condition and the GFI immediately opens to remove power from the faulted circuit.

By this definition, electrical noise and other transient currents such as inductive spikes are considered fault currents. The fact that these currents are very short lived and of relatively small power allows them to be safely shunted without tripping a Ground Fault Interrupt circuit.
Avoiding Grounding Problems (continued)

Grounding problems occur when the grounding system carries currents during normal operation or when it cannot shunt high frequency electrical currents to earth.

AMCI generally encounters three types of grounding problems in systems that use AMCI equipment.

- **Ground Loops**: A ground loop occurs when AC or DC return currents can travel through the system ground path in addition to their normal return path. This can cause damaging currents to electronics that share the power supply.

 Ground loops in AC systems can occur when the neutral conductor is bonded to the Grounding Electrode System in more than one place. Under the right conditions, AC line currents may end up flowing through the protective ground system, which may include exposed metal surfaces and therefore represent a touch shock hazard. Designing an effective ground fault detection system is well beyond the scope of this manual. Please refer to the NEC and other design guidelines for your area.

- **Ground Shift**: Remote machines or monitoring stations will usually be connected to a different point on the Grounding Electrode System than a local system. A voltage potential can exist between these stations due to resistance between the grounding electrodes and earth. A similar problem exists on machines that are not properly bonded together. The resistance of a poor bond in the system will result in a voltage potential across the connection when current is forced through it. Incorrectly installed sensor or communications cables that run between these systems can be damaged by these Ground Shift potentials.

- **High Impedance Grounds**: The grounding system shows a high impedance to high frequency noise currents and these signals are not properly shunted to earth. The high impedance to high frequency noise is caused by capacitance and inductance in the system. Use #8 AWG stranded wire or 1" wire braid for all ground connections and keep connections as short as possible to minimize capacitance and inductance in the grounding system.

Surge (EMI) Suppression

Incoming Power

In many systems, three phase power is brought to the machine and the control system is powered from one of these phases. In these cases, good quality, clean AC power can only be achieved by properly conditioning the three phase power, not just the single phase used by the control system. This is generally achieved by placing surge suppressors across each phase where the three phase enters the system and at all inductive loads that are on the three phase branch. This includes inductive loads on any other machine that may be powered by the same feeder circuit.

![Figure R7.2 Surge Suppression on Power Inputs](image-url)
Surge (EMI) Suppression (continued)

Inductive Loads

NOTE

All inductive devices in the system, such as AC and DC motors, motor starters, contactors, relays and solenoids, must have surge suppression devices installed across their coils.

NOTE

Because the Networked Driver is responsible for commutating the stepper motor, surge suppressors cannot be installed at the motor connector. The best way to avoid noise issues when using a stepper motor is proper cable installation. Keep the motor wires as short as possible. Consider twisting the winding pairs together to minimize radiated noise. Use shielded cable if you must extend the cable and tie the shield to earth ground at the Networked Driver motor connector only.

System Environment

When designing the physical layout of your system it is important to review the environment your control system will be placed in. This should include reviews of both the physical and electrical environments.

- Check the quality of the AC power that will feed the machine.
- Check for adequate surge suppression on machines that will be near your new system.

A review of the electrical environment includes checking the quality of the AC power that will feed your new system as well as checking the quality of the point where your system will be connected to the building's Grounding Electrode System.

When checking the quality of the AC power for your system, be sure to check every machine that may be powered by the same feeder circuit. It is in AMCI's experience that nuisance faults can be caused by another system on the same feeder circuit that does not have adequate surge suppression devices.

System Layout Considerations

The first step to achieving a clean system layout is classifying the wires and cables used in your system based on the amount of power they carry. Refer to the following table to help you categorize your wires and cables.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control and AC Power - High power conductors that are more tolerant of electrical noise but are also more likely to carry electrical noise than the other categories. Corresponds to IEEE levels 3 & 4</td>
<td>AC power lines, High power digital AC I/O lines, High power digital DC I/O lines</td>
</tr>
<tr>
<td>2</td>
<td>Signal and Communication - Low power conductors that are less tolerant of electrical noise but are also less likely to carry electrical noise than category 1. Corresponds to IEEE levels 1 & 2</td>
<td>Analog I/O lines, Low power digital AC I/O lines, Low power digital DC I/O lines, Ethernet or other Communications Cables</td>
</tr>
<tr>
<td>3</td>
<td>Intra-enclosure - Similar characteristics to category 2 conductors, these conductors interconnect system components within an enclosure.</td>
<td>Low voltage DC power cables, Communications Cables</td>
</tr>
</tbody>
</table>

Table R7.1 Conductor Categories

Wiring Categories for the SD17060A2 or SD31045A2

- AC Power Input: Class 1 (AC power line)
- DC Input cables (also included encoder cabling): Class 2 (Low power digital DC input line)
- DC output cable: Class 2 (Low Power digital DC output line)
- Motor Outputs: Class 1 (High Power DC outputs)
System Layout Considerations (continued)

Minimize Voltages in the System Enclosure
You will want to minimize the voltage in the enclosure that houses your control system to minimize EMI and voltage transients. In many cases, three phase is used to power the machine's motors and the control system is powered by one of the phases. Ideally, the three phase power, it's disconnect, fuses, filtering, and all three phase controls such as motor starters, are housed in their own enclosure. The single phase used to power the control system is then brought into a separate enclosure built exclusively for the control system.

Power Supply Sizing
A properly sized power supply is vital to system operation. The best guideline that we can give you is to buy the best supply your budget allows and consider the surge requirements of the components you are attaching to the supply.

Component Placement
Once you have established the proper categories of all of the system's wires and cables and determined all of your components you can determine proper component placement and conductor routing within the system enclosure.

The following guidelines are for noise immunity only. Follow all local codes for safety requirements.

There are three general guidelines to follow when placing components:

- Keep as much physical space between the classes of conductors as possible.
- Minimize the distance that conductors run in parallel with each other to minimize capacitive coupling.
- If conductors must cross, they should do so at right angles to minimize inductive coupling.

If you have a PLC in your system, be sure to consider the spacing of the modules within the rack. Do not place an AC output module next to low level DC input module unless absolutely necessary. For example, consider placing low level input modules on the left side of the rack, high power AC output modules on the right side, and medium power I/O in the center. This should help you maximize the spacing of I/O wiring within the enclosure.
System Layout Considerations (continued)

Conduits to Enclosure

When designing the layout of your system be sure to include enough conduits to house the different categories of cabling. To guard against coupling noise from one conductor to another, follow the spacing guidelines in Table R7.2 below. These spacing values should be followed for routing cables both inside and outside of an enclosure. Of course, sometimes these guidelines cannot be followed, such as when the connection points on a controller are spaced closer together than these guidelines recommend.

<table>
<thead>
<tr>
<th>Category</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>These conductors can be routed in the same cable tray, raceway, or conduit as machine power conductors of up to 600Vac. Power conductors cannot feed larger than 100HP devices.</td>
</tr>
</tbody>
</table>
| 2 | - If they must cross power feeds, they must do so at right angles.
- Route in a raceway or conduit separate from all category 1 conductors and properly shield where applicable.
- Any metal wireway or conduit that houses the conductor must be bonded along its entire length and bonded to the enclosure at its entry point.
- If in a continuous metal wireway or conduit, route at least 3" from category 1 conductors of less than 20A, 6" from category 1 conductors of greater than 20A and 12" from any category 1 conductor of any amperage of the circuit is greater than 100 kVA.
- If not in a continuous metal wireway or conduit, route at least 6" from category 1 conductors of less than 20A, 12" from category 1 conductors of greater than 20A and 24" from any category 1 conductor of any amperage of the circuit is greater than 100 kVA.
- Route at least 5 feet away from high-voltage enclosures or sources of rf/microwave radiation. |
| 3 | Route these conductors external to all raceways in the enclosure or in a raceway separate from all category 1 conductors. Use the same spacing rules given for category 2 conductors. |

Table R7.2 Conductor Routing Guidelines

Installing an AMCI Networked Driver

The Networked Driver is designed to be mounted in an enclosure that is close to the motor. On small machines, this may be the same enclosure that the rest of the control system is mounted in. On large machines, this is typically a small enclosure that only houses the Networked Driver.

- A minimum of two conduits are required for the enclosure that houses a Networked Driver. One conduit is for the DC I/O and ethernet cable, and the other is for AC power and the motor connections. Three conduits may be required if the code in your area does not allow you to run the motor connections with AC power or if the noise generated on the motor connections is injected into your AC lines.
- If 230Vac is the only line voltage available in a system that is using the SD17060A2 Drivers, a step down transformer that is rated for a minimum of 800VA must be installed. Consider installing this transformer in the enclosure with the SD17060A2 Networked Driver. This will prevent any noise placed on the AC line by the SD17060A2 from leaving the enclosure.
- For the SD31045A2 Drivers, if 115Vac is the only line voltage available in the system and you require the 310Vdc motor bus, a step up transformer that is rated for a minimum of 800VA must be installed. Consider installing this transformer in the enclosure with the SD31045A2. This will prevent any noise placed on the AC line by the SD31045A2 from leaving the enclosure.
- Like all motors, stepper motors are noise generators and must be properly grounded when installed.
- Keep the motor wires as short as possible. Consider twisting the winding pairs together to minimize radiated noise. Use shielded cable if you must extend the cable and tie the shield to earth ground at the motor connector of the Networked Driver only.
1.1 Location
AMCI Networked Drivers are suitable for use in industrial environments that meet the following criteria:

➤ Only non-conductive pollutants normally exist in the environment, but an occasional temporary conductivity caused by condensation is expected.
➤ Transient voltages are controlled and do not exceed the impulse voltage capability of the product’s insulation.

Note that these criteria apply to the system as a whole. These criteria are equivalent to the Pollution Degree 2 and Over Voltage Category II designations of the International Electrotechnical Commission (IEC).

1.2 Safe Handling Guidelines

1.2.1 Prevent Electrostatic Damage

CAUTION
Electrostatic discharge can damage the Networked Driver. Follow these guidelines when handling the unit.

1) Touch a grounded object to discharge static potential before handling the module.
2) Work in a static-safe environment whenever possible.
3) Wear an approved wrist-strap grounding device.
4) Do not touch the pins of the bus connector or I/O connector.
5) Do not disassemble the module
6) Store the module in its anti-static bag and shipping box when it is not in use.

1.2.2 Prevent Debris From Entering the Unit

WARNING
While mounting a devices, be sure that all debris (metal chips, wire strands, tapping liquids, etc.) is prevented from falling into the driver. Debris may cause damage to the unit or unintended machine operation with possible personal injury.

1.2.3 Remove Power Before Servicing in a Hazardous Environment

WARNING
Remove power before removing or installing a Networked Driver in a hazardous environment.

1.3 Airflow and Wiring Space
To ensure adequate space for wiring and convectional cooling, you need:

➤ 2.0” (50 mm) of space above and below the driver
➤ 1.5” (37 mm) of space to the left and right of the driver
➤ 1.0” (25 mm) of space in front of the driver

NOTE
Drivers should be mounted with the orientation shown in the outline drawings below. Holes are in the top and bottom of the driver cover for convectional cooling. If you have an active cooling system such as enclosure fans, the drivers should still be mounted as shown below, but you should be able to mount the drivers closer together.
1.4 Outline Drawings

1.4.1 SD17060A2 Outline Drawing

Figure T1.1 SD17060A2 Outline Drawing

Min. screw length = 0.31" (7.9) + thickness of mounting panel.
Max. screw length = 0.62" (15.8) + thickness of mounting panel.

#10-32 UNF-2B. Four places.
1.4 Outline Drawings (continued)

1.4.2 SD31045A2 Outline Drawing

Figure T1.2 SD31045A2 Outline Drawing

1.5 Mounting Methods

There are two ways to mount an AMCI Networked Driver. The first method is with the #10-32 screws into the side panel of the SD17060A2 or the back panel of the SD31045A2. The second method is by the mounting tabs. Mounting tabs are for #6 screws.

WARNING

When using the panel mounting method that uses the #10-32 screws, minimum and maximum screw lengths must be observed to prevent a screw from shorting to the PC board or components.

NOTE

There are airflow holes in the top and bottom of the enclosure. To ensure adequate convensional airflow, the drive must be mounted in the orientation shown in the drawing.
1.6 Grounding and Powering the System

The chassis must be connected to earth ground. Failure to properly ground the chassis leaves the potential for severe electrical hazard and/or problems with normal operation.

The Networked Driver must be grounded for proper operation. The **GND** connection on the power connector is connected to the enclosure of the Networked Driver and is a sufficient grounding point for most applications. When mounting the Networked Driver on a surface that is electrically conductive and grounded, you should take steps to ensure that the two are electrically bonded together. If necessary, remove paint from the surfaces of the panel that contact the mounting bolts to ensure adequate electrical bonding.

AC power connections are made to the Networked Driver using the power connector kit that ships with the driver. This kit includes the power connector and rubber boot. Figure T1.3 below shows how to properly wire and ground the driver.

For clarity, the rubber boot is not shown in the figure. When installing the power cable, slide the rubber boot onto the cable before wiring the connector. When you’re sure the wiring is correct, slide the boot over the connector to cover the screw heads.

![Figure T1.3 Power and Grounding Connections](image)

Notes:

1) Input power must be 95 to 132 Vac, 50/60 Hz for the SD17060A2 and 95 to 264 Vac, 50/60 Hz for the SD31045A2. Input power must able to supply 800VA for proper operation.

2) Never attempt to power an SD17060A2 with 230Vac. Doing so will damage the driver and void its warranty.

Both the Neutral and the Line power connections are internally fused in the AMCI Networked Drivers. These fuses are not field replaceable, so external fuses or circuit breakers should also be used. They must be rated for at least 10 amps.
1.7 Installing the Stepper Motor

1.7.1 Outline Drawings

Outline drawings for all of our motors can be found on our website, www.amci.com. They’re available as Adobe Acrobat pdf files. A document that is simply called wiring lists all of the wiring color codes for all AMCI motors.

1.7.2 Mounting the Motor

All AMCI motor have flanges on the front of the motor for mounting. This flange also acts as a heatsink, so motors should be mounted on a large, unpainted metal surface. Mounting a motor in this fashion will allow a significant amount of heat to be dissipated away from the motor, which will increase the motor’s life by reducing its operating temperature. If you cannot mount the motor on a large metal surface, you may need to install a fan to force cooling air over the motor.

Motors should be mounted using the heaviest hardware possible. AMCI motors can produce high torques and accelerations that may weaken and shear inadequate mounting hardware.

1) The motor case must be grounded for proper operation. This is usually accomplished through its mounting hardware. If you suspect a problem with your installation, such as mounting the motor to a painted surface, then run a bonding wire from the motor to a solid earth ground point near it. Use a minimum #8 gauge stranded wire or 1/2” wire braid as the grounding wire.

2) Do not disassemble any stepper motor. A significant reduction in motor performance will result.

1.7.3 Connecting the Load

Care must be exercised when connecting your load to the stepper motor. Even small shaft misalignments can cause large loading effects on the bearings of the motor and load. The use of a flexible coupler is strongly recommended whenever possible.

1.7.4 Extending the Motor Cable

Even though it is possible to extend the cable length an additional forty feet, AMCI recommends installing the Networked Driver as close to the motor as possible. This will decrease the chances of forming a ground loop, and has the added benefit of limiting the amount of power loss in the motor cable. If you must extend the cable, you should use a cable with twisted pairs 18 AWG or larger and an overall shield. Belden 9554 (eight wire), 9553 (six wire) and 9552 (four wire) meet these specifications for 18 AWG+. For long runs, consider using 14 AWG wire. Belden 1070A (eight wire), 1527A (six wire) and 1069A (four wire) meet these specifications for 14 AWG.

1.7.5 Installing the Motor Cable

1) All of the motor connections are high power, high voltage signals. Cable from the motor can be installed in conduit along with ac/dc power lines or high power ac/dc I/O. It cannot be installed in conduit with low power cabling such as I/O cabling or Ethernet cabling attached to the Networked Driver.

2) If you decide to extend the motor cable, treat the shield as a signal carrying conductor when installing the motor cable. Do not connect the shield to earth ground at any junction box.
1.8 Connecting the Motor

1.8.1 Motor Connector

The motor connector is shown in figure T1.4. The two Interlock terminals are a safety feature. When these two terminals are not connected, the driver will not power the motor outputs, the Status LED turns on red, and it activates the Fault Output. For normal operation, these two terminals must be connected together with a short wire.

The two center tap pins, A CTAP and B CATP, are there for wiring convenience only. They are electrically isolated from the rest of the driver and are not used to power the motor. The EARTH GND pin is for the shields of the motor cable. This pin is directly connected to the GND pin of the power connector on the Networked Driver.

When powered, the motor connector represents a shock hazard because it has 170/310 Vdc present on its terminals. A rubber boot that is included with the connector must be installed but is not shown in the following figures for clarity. When installing the motor cable, slide the rubber boot onto the cable before wiring the connector. When you’re sure the wiring is correct, slide the boot over the connector to cover the screw heads.

Always remove power from the Networked Driver before connecting or disconnecting the motor.

1. Never connect the motor leads to ground or to a power supply.
2. Always connect the cable shield to the Earth Ground terminal of the Motor Connector on the Networked Driver.

1.8.2 Interlock Wiring

The motor interlock is designed to prevent 170/310 Vdc power from being supplied to the motor connector unless its mate is installed. As shown in figure T1.4 above, a short wire has to be installed between the two outer pins of the mating connector or the motor will not receive power when it is plugged into the Networked Driver.

It is possible to use the Interlock terminals as an alternative way of disabling motor current. This is accomplished by wiring the two pins through a mechanical contact. The wires to the Interlock pins should be kept as short as possible, which means using a mechanical relay in the cabinet that houses the Networked Driver if you need to control the Interlock from a source outside the cabinet. Only mechanical relays should be used. The voltage between the two interlock pins will never exceed 5 Vdc, but 115/230 Vac may be present between either of the two interlock pins and either of the power supply pins.

When the Networked Driver detects a break in the Interlock wiring, it will issue a Driver Fault error. This error is latched and can only be cleared after the interlock connection is re-established. The fault can be cleared over the network by following the procedure outlined in Notes on Clearing a Driver Fault which starts on page 73 or by cycling power to the driver.
1.8 Connecting the Motor (continued)

1.8.3 Motor Wiring

A Networked Driver will work with many different motors, including those not sold by AMCI. This section assumes that you have already chosen your motor and you are looking for wiring information. No wire colors are given in the figures below because there is no single industry wide color coding scheme for stepper motors. You must refer to your motor data sheets for this information.

A wiring document for all of the motors ever sold by AMCI is available on our website. This single document contains all of the information necessary to connect any AMCI motor to any AMCI driver.

Figure T1.5 shows how to wire a motor to a Networked Driver in series, parallel, or center-tap configurations.

Eight Lead Series Connected

Eight Lead Parallel Connected

Six Lead Series Connected

Six Lead Center Tap Connected

Four Lead Connected

NOTES

1) Refer to the torque vs. speed curves on your motor’s specifications sheet to determine if you should wire the motor to the Networked Driver in series, parallel, or center-tap configurations.

2) Motor connections should be tight. Loose connections may lead to arcing which will heat the connector. Phoenix Contact specifies a tightening torque of 4.4 to 5.4 lb-in (0.5 to 0.6 Nm).

Figure T1.5 Motor Wiring
1.9 I/O Wiring

1.9.1 Input Wiring

Figure T1.6 below shows how to wire discrete DC differential, sourcing, and sinking sensors to Inputs 1, 2, and 3 of the Networked Driver. Encoders typically have differential outputs, but must be wired to the driver in a specific way. More information on wiring an encoder is given later in this chapter.

Input Specifications:

Differential. 1500 Vac/dc opto-isolated. Can be wired as single ended inputs. Accepts 3.5 to 27Vdc without the need for an external current limiting resistor.

![Input Schematic](image)

Figure T1.7 Simplified Input Schematic

Because they are low power signals, cabling from the sensor to the Networked Driver should be done using a twisted pair cable with an overall shield. The shield should be grounded at the end where the signal is generated, which is the sensor end. If this is not practical, the shield should be grounded to the same ground bus as the Networked Driver.
1.9 I/O Wiring (continued)

1.9.2 Output Wiring

The output on the Networked Driver is an optically isolated transistor that is capable of driving a typical PLC input. Both ends are uncommitted, so it can be wired as a sinking or sourcing output.

Electrical Specifications

<table>
<thead>
<tr>
<th>Electrical Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdc max:</td>
<td>30Vdc</td>
</tr>
<tr>
<td>VCEsat</td>
<td>1Vdc @ 20 mA</td>
</tr>
<tr>
<td>IC max</td>
<td>20 mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>20 mW max.</td>
</tr>
</tbody>
</table>

RLIMIT

A resistor may be needed to limit the current through the output. The value, and power rating of the resistor is dependent on the value of Vdc, the voltage drop across the input, and the current requirements of the input.

1.9.3 Encoder Wiring

The figure below shows how to wire a 5Vdc differential encoder to a Networked Driver.

- The ±A channel must be wired to Input 1 for proper operation
- The ±B channel must be wired to Input 2 for proper operation
- The ±Z channel is optional. If used, it must be wired to Input 3. The Z channel is only used when homing the Networked Driver.

Figure T1.9 Sample Encoder Wiring
1.10 PROFINET Connections

The PROFINET connectors are located on the top of the SD17060A2 and SD31045A2 units. The connectors are standard RJ-45 jacks that will accept any standard 100baseT cable. Because the port can run at 100 Mbit speeds, Category 5, 5e, or 6 cable should be used.

The Ethernet ports on the units are an “auto-sense” ports that will automatically switch between 10baseT and 100baseT depending on the network equipment they are attached to. The ports also have “auto switch” capability. This means that a standard cable can be used to connect the SD17060A2 or SD31045A2 to any device, including a personal computer.

1.10.1 Non-MRP Applications

The Ethernet Drivers have two Ethernet ports with a built-in Ethernet switch connecting the two. In non-MRP applications, either port can be used to attach the unit to the network. Also, both ports can be used in non-MRP applications. For example, if two drivers are located some distance from your controller, then you need only run one cable from your controller to the first driver. The second driver can then be attached to the first with a short cable. There is no need to run two cables from your controller.

1.10.2 MRP Applications

In Media Redundancy Protocol applications, the Ethernet Driver functions as a Media Redundancy Client (MRC). In these applications, both ports are used when wiring the ring, daisy chaining from one unit in the ring to the next.

1.10.3 Network Status LED’s

The network status LED’s are located on the top of the Networked Driver along with the RJ-45 connectors. The different states of the LED’s is described in the PROFINET Status LED’s found on page 19.
Basic Steps

Configuring a PROFINET host requires a few basic steps.

1) Download the ZIP archive that contains the GSDML files for the SD17060A2/SD31045A2 from the www.amci.com website.
2) Install the GSDML file into the configuration software for your host controller.
3) Add the SD17060A2/SD31045A2 to the PROFINET Network.
4) Set the I/O word addresses used to communicate with the SD17060A2/SD31045A2.

2.1 Download the GSDML files

The GSDML files are available on the AMCI website on the http://www.amci.com/industrial-automation-support/configuration-files/ web page. The file is a ZIP archive that has to be extracted to a folder on your computer. Extracting the ZIP file will leave you with two files. One is the GSDML file and one is the icon file.

2.2 GSDML File Installation

1) With the SIMATIC manager software started and the correct project open, click on the SIMATIC 300 station icon in the project tree. Double click on the Hardware icon to open the HW Configuration editor.
2) Select Options -> Install GSD File... from the file menu. The “Install GSD Files” window will open.
3) Click on the [Browse] button and navigate to the folder that contains the extracted GSDML file you downloaded from the AMCI website. Once at the folder, click on the [OK] button.
4) Select the GSDML file from the file list and click on the [Install] button. In the resulting window, click on the [Yes] button to confirm the installation of the GSD files.
5) Click the [Close] button to close the Install GSD File window.
6) Update the hardware catalog list by selecting Options -> Update Catalog from the toolbar menu.
2.3 Configure the PROFINET Network

A CPU must be added to the project and the PROFINET network must be configured before a Networked Stepper Driver can be added to the system.

Refer to Siemens documentation for information on configuring the PROFINET network to suit your application.

2.4 Add the SD17060A2/SD31045A2 to the PROFINET Network

1) With the SIMATIC manager software started and the correct project open, click on the SIMATIC 300 station icon in the project tree. Double click on the Hardware icon to open the HW Configuration editor.

2) If the Hardware Catalog tree is not available on the right side of the HW Configuration Editor window, press [CTRL+K] to open it.

3) Browse to the SD17060x2 icon by clicking through PROFINET IO +> Additional Field Devices +> I/O +> AMCI_Products +> AMCI_Drives. Drag and drop the appropriate icon onto the PROFINET network line.

![Networked Driver Added to PROFINET Network](image1.png)
2.4 Add the SD17060A2/SD31045A2 to the PROFINET Network (continued)

4) Open the Properties Window by double clicking on the new icon in your network. Enter the desired Device name. Click on the [Ethernet…] button and enter the desired IP address of the SD17060A2 in the window that opens. The default address of 192.168.0.50 is shown in this example. Close both of the pop-up windows.

2.5 Set the I/O Configuration

The Networked Driver requires 10 Input Words (20 Input Bytes) and 10 Output Words (20 Output Bytes). All required Input and Output Bytes are defined by the GSDML file and divided into suitable modules. These settings are shown in the Table T2.1.

<table>
<thead>
<tr>
<th>Input / Output Bytes of an SD17060A2 / SD31045A2</th>
<th>Input / Output Modules of an SD17060A2 / SD31045A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Input Bytes</td>
<td>Input Module - Slot 1: 20 bytes</td>
</tr>
<tr>
<td>20 Output Bytes</td>
<td>Output Module - Slot 2: 20 bytes</td>
</tr>
</tbody>
</table>

Table T2.1 PROFINET I/O Configuration
2.5 Set the I/O Configuration (continued)

1) With the Networked Driver icon selected on the PROFINET bus, expand the SD17060x2 tree in the Hardware Catalog to the Input modules and Output modules folders.

2) To map the I/O bytes to the CPU, double click on the “20 bytes IN” and “20 bytes OUT” icons in the Hardware Catalog. The result of these actions is shown in figure T2.4 below. The system automatically assigns I and Q address to the data table.

2.6 Verify and Download the New Configuration

1) Continue by adding any remaining devices to your PROFINET network. Remember to compile and download the changes to your PLC.

2) Verify that the PLC and the Networked Driver are connected to the PC and powered up. As shown in Figure T2.5, click on the ‘Save and Compile’ icon. When compiling is complete, click on the ‘Download’ icon to download the new configuration to the PLC.
2.7 Update Networked Driver’s IP Information

The IP Address and the Device Name that were designated in PLC’s network configuration must also be configured in the Networked Driver itself.

1) Click on the Networked Driver’s icon to select it. From the Toolbar Menu, select PLC +> Ethernet +> Edit Ethernet Node. The window shown in Figure T2.6 should appear.

![Edit Ethernet Node](image)

Figure T2.6 Edit Ethernet Node Information

2) Enter the MAC address of the Networked Driver or click on the Browse button and select the MAC address from the list that appears. Enter the IP address and the Subnet mask, and click on the [Assign IP Configuration] button. A message indicating that the IP Configuration has been successfully assigned should appear.

3) Enter the chosen Device Name in the ‘Assign device name’ field. Click on the [Assign Name] button and the new Device name will be assigned to the Networked Driver. A message indicating that the Device Name has been successfully assigned should appear.

4) Close all of the pop-up windows.
2.7 Update Networked Driver’s IP Information (continued)

5) Verify that the Networked Driver has been successfully added to the network. Select the Driver’s icon. From the Toolbar Menu, select PLC +> Ethernet +> Verify Device Name ... The window shown in figure T2.7 should appear.

At this point, the Networked Driver is configured and ready to use. If you are using the Networked Driver in a redundant, ring based, network that uses the Media Redundancy Protocol (MRP), continue with the instructions in the following section.
A.1 Configure the Networked Driver as an MRC

The AMCI Networked Driver functions as a Media Redundancy Client (MRC) in an MRP network.

1) Click on the icon for the Networked Driver that is attached to the PROFINET line. The unit's module list will appear. Double-click on “PN-IO” in the module list. As shown in figure A.1, the “Properties - PN-IO” window will open.

2) Select the “Media Redundancy” tab. Select the proper domain from the “Domain:” drop down list. Select “Client” from the “Role:” drop down list. Close the Properties window.

Figure A.1 PN-IO Properties
A.1 Configure the Networked Driver as an MRC (continued)

3) With the Networked Driver still selected, double-click on “Port 1” within unit’s module list. As shown in Figure A.2, the Port 1 Properties window will open.

4) Click on the “Topology” tab. Under “Partner Port”, click on the down arrow to open the drop down list. If you know what unit and what port are connected to Port 1, you can select it here. Otherwise, select the “Any partner” option. If you choose this option, you can later use the Topology Editor to select the appropriate device.

5) Close the “Properties” window.

6) Repeat steps 3 through 5 for Port 2.
A.2 Verify Network with the Topology Editor

1) Open the Topology Editor from Toolbar Menu by selecting EDIT +> PROFINET IO +> Topology In the resulting window, click on the “Graphical view” tab. Figure 9, shows the view of a sample network.

![Topology Editor Diagram]

Figure A.3 Sample Network

2) If the Partner Ports were not selected during the port set-up in the previous step, you can connect the ports by simply clicking on the appropriate port and dragging it to the correct Partner Port on a neighboring device.

3) When all of the devices are properly connected, click on the Online button to see the online status of the ring connections.
Notes
B.1 Firewall Settings

Firewalls are hardware devices or software that prevent unwanted network connections from occurring. Firewall software is present in Windows XP and above and it may prevent your computer for communicating with the SD17060A2 or SD31045A2. Configuring your firewall to allow communication with the Networked Driver through the PROFINET protocols is beyond the scope of this manual.

B.2 Configure Your Network Interface

Before you can communicate with the SD17060A2 or SD31045A2, your network interface must be on the same subnet as the driver.

The rest of this procedure assumes you are using the 192.168.0.xxx subnet. If you are not, you will have to adjust the given network addresses accordingly.

The easiest way to check the current settings for your NIC is with the ‘ipconfig’ command.

For Vista and Windows 7, click on the [Start] button, and type “cmd” in the “Search programs and files” text box. Press [Enter] on the keyboard.

For Windows 8 and 10, press the [Win+X] keys and select “Command Prompt” from the resulting popup. There is no need to run the command prompt as the administrator, so do not select “Command Prompt (Admin)”.

A DOS like terminal will open. Type in ‘ipconfig’, press [Enter] on the keyboard and the computer will return the present Address, Subnet Mask, and Default Gateway for all of your network interfaces. If your present address is 192.168.0.xxx, where ‘xxx’ does not equal 50, and your subnet mask is 255.255.255.0, then you are ready to configure your NR60 encoder. Figure B.1 shows the output of an ipconfig command that shows the “Local Area Connection 2” interface on the 192.168.0.xxx subnet.

If your present address in not in the 192.168.0.xxx range, type in ‘ncpa.cpl’ at the command prompt and hit [Enter] on the keyboard.

For Vista and Windows 7, this open the Network Connections window. Double click on the appropriate interface. In the window that opens, select “Internet Protocol Version 4 (TCP/IP v4)” from the list and then click on the [Properties] button.

For Windows 8 and 10, this open the Network Connections window. Double click on the appropriate interface. In the window that opens, select “Internet Protocol Version 4 (TCP/IP v4)” from the list and then click on the [Properties] button.

Set the address and subnet mask to appropriate values. (192.168.0.1 and 255.255.255.0 will work for an SD17060A2 or SD31045A2 that has factory default settings.) The default gateway and DNS server settings can be ignored.

B.3 Test Your Network Interface

Going back to the terminal you opened ion the last step, type in ‘ping aaa.bbb.ccc.ddd’ where ‘aaa.bbb.ccc.ddd’ in the IP address of the SD17060A2 or SD31045A2. The computer will ping the Networked Driver and the message “Reply from aaa.bbb.ccc.ddd: bytes=32 time<10ms TTL=128” should appear four times.

If the message “Request timed out.” or “Destination host unreachable” appears, then one of four things has occurred:

- You did not enter the correct address in the ping command.
- The IP address of the SD17060A2 or SD31045A2 is not set correctly.
- The SD17060A2 or SD31045A2 and the computer are not on the same subnet.
The equations in this appendix use a unit of measure of steps/second/second (steps/second^2) for acceleration and deceleration. However, when programming the SD17060A2 or SD31045A2, all acceleration and deceleration values must be programmed in the unit of measure of steps/millisecond/second.

- To convert from steps/second^2 to steps/millisecond/second, divide the value by 1000. This must be done when converting from a value used in the equations to a value programmed into the Networked Driver.
- To convert from steps/millisecond/second to steps/second^2, multiply the value by 1000. This must be done when converting from the value programmed into the Networked Driver to the value used in the equations.

Constant Acceleration Equations

When you choose to use constant accelerations, the speed of the move will increase linearly towards the Programmed Speed. This is the fastest form of acceleration, resulting in the fastest move between two points at its programmed speed. For the smoothest transition from the starting speed, the starting speed should be equal to the square root of the acceleration in steps/sec^2. For example, if the choose acceleration is 20,000 steps/sec^2, the smoothest transition occurs when the starting speed is 141. (141^2 = 20,000)

![Figure R8.1 Constant Acceleration Curves](image)

Variable Definitions

The following variables are used in these equations:

- \(V_S \) = Configured Starting Speed of the move
- \(V_P \) = Programmed Speed of the move
- \(a \) = Acceleration value. Must be in the units of steps/second^2
- \(d \) = Deceleration value. Must be in the units of steps/second^2
- \(T_A \) or \(T_D \) = Time needed to complete the acceleration or deceleration phase of the move
- \(D_A \) or \(D_D \) = Number of Steps needed to complete the acceleration or deceleration phase of the move
Constant Acceleration Equations (continued)

Figure R8.1 gives the equations to calculate Time, Distance, and Acceleration values for a constant acceleration move.

<table>
<thead>
<tr>
<th>Acceleration Type</th>
<th>TA or TD (Time to Accelerate or Decelerate)</th>
<th>DA or DD (Distance to Accelerate or Decelerate)</th>
<th>a (Average Acceleration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(T_A = (V_P - V_S)/a)</td>
<td>(D_A = T_A*(V_P + V_S)/2)</td>
<td>(a = (V_P^2 - V_S^2)/2D_A)</td>
</tr>
</tbody>
</table>

Table R8.1 Acceleration Equations

If the sum of the \(D_A \) and \(D_D \) values of the move is *less than* the total number of steps in the move, your move will have a Trapezoidal profile.

If the sum of the \(D_A \) and \(D_D \) values of the move is *equal to* the total number of steps in the move, your move will have a Triangular profile and your move will reach the Programmed Speed before it begins to decelerate.

If the sum of the \(D_A \) and \(D_D \) values of the move is *greater than* the total number of steps in the move, your move will have a Triangular profile and it will *not* reach the Programmed Speed before it begins to decelerate.

As an example, lets assume the values in table R8.2 for a move profile.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Networked Driver Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (a)</td>
<td>20,000 steps/sec (^2)</td>
<td>20</td>
</tr>
<tr>
<td>Deceleration (d)</td>
<td>25,000 steps/sec (^2)</td>
<td>25</td>
</tr>
<tr>
<td>Starting Speed (V_S)</td>
<td>141 steps/sec</td>
<td>141</td>
</tr>
<tr>
<td>Programmed Speed (V_P)</td>
<td>100,000 steps/sec</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Table R8.2 Sample Values

From figure R8.1:

- Time to accelerate: \(T_A = (V_P - V_S)/a = (100,000 - 141)/20,000 = 4.993 \) seconds
- Time to decelerate: \(T_D = (V_P - V_S)/d = (100,000 - 141)/25,000 = 3.994 \) seconds
- Distance to Accelerate: \(D_A = T_A*(V_P + V_S)/2 = 4.993 * (100,000 + 141)/2 = 250,002 \) steps
- Distance to Decelerate: \(D_D = T_D*(V_P + V_S)/2 = 3.994 * (100,000 + 141)/2 = 199,982 \) steps
- Total Distance needed to accelerate and decelerate: \(250,002 + 199,982 = 449,984 \) steps

If a move with the above acceleration, deceleration, starting speed, and programmed speed has a length greater than 449,984 steps, the Networked Driver will generate a Trapezoidal profile. If the move is equal to 449,984 steps, the Networked Driver will generate a Triangular profile and the Networked Driver will output one pulse at the programmed speed. If the move is less than 449,984 steps, the Networked Driver will generate a Triangular profile and the programmed speed will not be reached.

In the case of a Triangular profile where the programmed speed is not reached, it is fairly easy to calculate the maximum speed \((V_M) \) attained during the move. Because the move is always accelerating or decelerating, the total distance traveled is equal to the sum of \(D_A \) and \(D_D \).

\[
D_A = T_A*(V_M + V_S)/2 \quad \text{and} \quad T_A = (V_M - V_S)/a. \quad \text{By substitution:}
\]

\[
D_A = (V_M - V_S)/a * (V_M + V_S)/2 = (V_M^2 - V_S^2)/2a. \quad \text{By the same method,}
\]

\[
D_D = (V_M^2 - V_S^2)/2d.
\]

Therefore, total distance traveled =

\[
D_A + D_D = (V_M^2 - V_S^2)/2a + (V_M^2 - V_S^2)/2d.
\]

In the case where the acceleration and deceleration values are equal, this formula reduces to:

\[
D_A + D_D = (V_M^2 - V_S^2)/a
\]
Continuing the example from table R8.2, assume a total travel distance of 300,000 steps.

\[D_A + D_D = \frac{V_M^2 - V_S^2}{2a} + \frac{V_M^2 - V_S^2}{2d} \]

300,000 steps = \(\frac{V_M^2 - 141^2}{2(20,000)} + \frac{V_M^2 - 141^2}{2(25,000)} \)

300,000 steps = \(\frac{V_M^2 - 20,000}{40,000} + \frac{V_M^2 - 20,000}{50,000} \)

300,000 steps = \(\frac{5\left(V_M^2 - 20,000\right)}{40,000} + 4\left(V_M^2 - 20,000\right) \)

300,000 steps = \(\frac{5V_M^2 - 100,000}{200,000} + \frac{4V_M^2 - 80,000}{200,000} \)

300,000 (200,000) = 9\(V_M^2 - 180,000 \)

\[\frac{60,000 \times 10^6}{9} = V_M^2 \]

\[V_M = 81,650 \text{ steps/sec} \]

Once you have calculated the maximum speed, you can substitute this value into the time and distance formulas in table R8.1 to calculate time spent and distance traveled while accelerating and decelerating.

Total Time Equations

For Trapezoidal Profiles you must first determine the number of counts that you are running at the Programmed Speed. This value, \(D_P \) below, is equal to your \(D_A \) and \(D_D \) values subtracted from your total travel. You can then calculate your total profile time, \(T_T \) below, from the second equation.

\[D_P = (\text{Total Number of Steps}) - (D_A + D_D) \]

\[T_T = T_A + T_D + D_P/V_P \]

For Triangular Profiles, the total time of travel is simply:

\[T_T = T_A + T_D \]
S-Curve Acceleration Equations

When the Acceleration Jerk parameter value is in the range of 1 to 5,000, the Networked Driver uses this value to smoothly change the acceleration value applied during the move. In this case, the speed of the move does not increase linearly, but exponentially, resulting in an “S” shaped curve. This limits mechanical shocks to the system as the load accelerates. Just as constant acceleration will result in a trapezoidal or triangular speed profile, the Acceleration Jerk parameter will result in a trapezoidal or triangular acceleration phase.

In order to keep the Acceleration Jerk parameter value that is programmed into the Networked Driver below sixteen bits, the Acceleration Jerk parameter programmed into the driver does not have units of steps/sec^3. The Acceleration Jerk parameter equals \(\frac{100 \times \text{jerk in steps/sec}^3}{\text{acceleration in steps/sec}^2} \). This translates to the jerk property in steps/sec^3 equalling \(\frac{\text{Acceleration Jerk parameter/100}}{\text{acceleration in steps/sec}^2} \). With the range of values for the Acceleration Jerk parameter being 1 to 5,000, the jerk value ranges from 0.01a to 50a where “a” is the acceleration value in steps/sec^2. For example, if the acceleration is programmed to 20,000 steps/sec^2, then the value of the jerk property used by the module can be programmed to be between 200 steps/sec^3 (0.01*20,000) and 1,000,000 steps/sec^3 (50*20,000). This statement applies to the Deceleration Parameter as well. If the Acceleration and Deceleration parameters are different, the calculate jerk values will also differ.

When using variable accelerations, the starting speed does not have to be equal to the square root of the programmed acceleration value. Variable acceleration provides smooth transitions at the beginning and end of the acceleration phase.

Triangular S-Curve Acceleration

Figure R8.2 shows the speed profile of a move during its acceleration phase. The figure shows the desired triangular S-curve acceleration in red along with the equivalent constant acceleration in blue. The equivalent constant acceleration is equal to the change in speed divided by the time it takes to achieve this change in speed. This is the value that would have to be used if the Jerk parameter was left at zero and we will use this information to calculate the S-curve acceleration and the value of the Jerk Parameter.

\[
s = \text{Programmed Speed} - \text{Starting Speed}
\]

\[
\text{Constant Acceleration: } a = \frac{s}{t} \quad \text{at } t = s
\]

\[
\text{Triangular S-Curve Acceleration: } a = \frac{a_c}{t/2} \quad \text{at } t/2 = a_c t
\]

\[
\text{Area of rectangle = Area of triangle = } \frac{a_c t}{2}
\]

\[
\text{Area of triangle} = \frac{1}{2} \times \text{base} \times \text{height}
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c \times t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

\[
\text{Area of triangle} = \frac{1}{2} \times a_c t
\]

This means that a triangular S-curve acceleration profile requires twice the programmed maximum acceleration as a constant acceleration profile to achieve the same speed in the same amount of time.
S-Curve Acceleration Equations (continued)

Triangular S-Curve Acceleration (continued)

The value of the Acceleration Jerk parameter can now be easily calculated.

\[j = \frac{a_s}{t/2} \quad (j = \frac{a}{t}) \]

\[j = \frac{2a_s}{t} \]

\[\frac{J a_s}{100} = \frac{2a_s}{t} \quad \left(j = \frac{J a}{100} \right) \]

\[J a_s t = 200a_s \]

\[J = \frac{200}{t} \quad \text{Acceleration Jerk parameter} = \frac{200}{\text{acceleration time}} \]

This value represents the ideal Acceleration Jerk parameter value for a triangular S-curve acceleration. Setting the value lower than this will result in a longer acceleration period, while setting the value above this will result in a trapezoidal S-curve acceleration.

When \(a_s = a_c \)

The above examples assume that you can increase the programmed acceleration value to keep the acceleration time the same. If your constant acceleration value is the maximum your system will allow, then using S-curve accelerations will lengthen the time needed to accelerate to your desired speed.

In the case of Triangular S-curve accelerations where the Acceleration Jerk parameter is optimized at 200/t, the value of “t” must be twice that of the acceleration period when constant acceleration is used. For example, assume a equivalent constant acceleration of 20,000 steps/sec^2 that is applied for 2.0 seconds. If the acceleration value must remain at 20,000 steps/sec^2, then the acceleration phase will take 4.0 seconds and the Acceleration Jerk parameter should be set to 50 (200/4.0)
S-Curve Acceleration Equations (continued)

Trapezoidal S-Curve Acceleration

Figure R8.4 shows the speed profile of a move during its acceleration phase. The figure shows the desired trapezoidal S-curve acceleration in red along with the equivalent constant acceleration in blue. The equivalent constant acceleration is equal to the change in speed divided by the time it takes to achieve the change in speed. This is the value that would have to be used if the Acceleration Jerk parameter was left at zero and we will use this information to calculate the S-curve acceleration and the value of the Acceleration Jerk Parameter.

Figure R8.4 Move Profile Example

In this example, the period of constant acceleration is 50% of the acceleration phase.

Speed is equal to acceleration multiplied by the time it is applied. This is shown graphically in figure R8.5 as the area of the blue rectangle. In order for the Trapezoidal S-curve acceleration to reach the same speed in the same amount of time, the area of the polygon must equal the area of the rectangle.

This means that a trapezoidal S-curve acceleration profile that is has a period of constant acceleration equal to half of the total phase time, requires its programmed acceleration value to be 4/3 that of the constant acceleration value used to achieve the same speed in the same amount of time.
S-Curve Acceleration Equations (continued)

Trapezoidal S-Curve Acceleration (continued)

The value of the Acceleration Jerk parameter can now be easily calculated.

\[j = \frac{a_s}{t/4} \] \((j = a/t) \)

\[j = \frac{4a_s}{t} \]

\[\frac{Ja_s}{100} = \frac{4a_s}{t} \] \((j = \frac{Ja}{100}) \)

\[Ja_s t = 400a_s \]

\[J = \frac{400}{t} \] \text{Acceleration Jerk Parameter} = 400 \text{/ acceleration time}

This value represents the ideal Acceleration Jerk parameter value for a trapezoidal S-curve acceleration with a constant acceleration for half of the phase. Setting the value lower than this will result in a shorter constant period, while setting the value greater than this will result in a longer constant period.

Another example of a trapezoidal S-curve acceleration is when the linear acceleration occurs for one third of the time. In this case, the programmed acceleration must be the constant acceleration value multiplied by \(3/2\) and the Acceleration Jerk parameter must be set to 300/t.

When \(a_s = a_c \)

The above examples assume that you can increase the programmed acceleration value to keep the time of the acceleration phase the same. If your constant acceleration value is the maximum your system will allow, then using S-curve accelerations will lengthen the time needed to accelerate to your desired speed.

In the case of trapezoidal S-curve accelerations, calculating the percentage increase in time is shown in figure R8.6. The time added to the acceleration phase is equal to the time spent increasing the acceleration during the phase. As shown in the figure, when the Trapezoidal S-curve is programmed to spend 50% of its time at the programmed acceleration value, the time spent in the acceleration phase will be 133.33% of the time spent if a constant acceleration were used.

In this case the value of the Acceleration Jerk parameter should be based on the new, longer time. For example, assume an equivalent constant acceleration of 15,000 steps/sec\(^2\) that is applied for 2.0 seconds. If the acceleration value must remain at 15,000 steps/sec\(^2\), then the acceleration phase will take 2.667 seconds (2.0x1.333) and the Acceleration Jerk parameter should be set to 150 (400/2.667).

Similarly, if the Trapezoidal S-curve acceleration is to spend 33.3% of its time at constant acceleration, and the programmed acceleration value cannot be increased, the time spent accelerating will increase by 50% and the Acceleration Jerk parameter should be adjusted accordingly.
S-Curve Acceleration Equations (continued)

Determining Waveforms by Values

If your programmed acceleration and deceleration values are the same, then your move’s acceleration and decelerations will be identical. If these two programmed values are different, use the above methods to determine the Acceleration Jerk parameter for either the move’s acceleration or deceleration phases and use the following calculations to determine the shape of the other phase.

Two examples are given below. Both assume a change in speed between the Starting Speed and Programmed Speed of 30,000 steps/sec and an acceleration of 58,000 steps/sec². The first example uses an Acceleration Jerk parameter value of 20 and the second a value of 400.

Triangular or Trapezoidal S-curve accelerations are always symmetrical. We’ll use this fact to calculate the profile up to one-half of the change in speed. At that point, doubling the time and distance will yield the total time and distance traveled.

Example 1, Jerk = 20

\[
S_m = \frac{30,000 \text{ steps/sec}}{2} = 15,000 \text{ steps/sec}
\]

\[
J = \frac{100j}{a} \Rightarrow j = \frac{Ja}{100}
\]

\[
j = \frac{20(58,000 \text{ steps/sec}^2)}{100} = 11,600 \text{ steps/sec}^3
\]

Just as displacement \(= \frac{1}{2}at^2 \), Speed \(= \frac{1}{2}jt^2 \)

\[
15,000 \text{ steps/sec} = \frac{11,600 \text{ steps/sec}^3(t^2)}{2}
\]

\[
t^2 = \frac{15,000 \text{ steps/sec}}{5,800 \text{ steps/sec}^3}
\]

\[
t = 1.608 \text{ seconds}
\]

Just as speed = at, acceleration = jt

\[
a_f = 11,600 \text{ steps/sec}^3(1.608 \text{ sec})
\]

\[
a_f = 18,655 \text{ steps/sec}^2
\]

Because \(a_f \) is less than or equal to the programmed acceleration of 58,000 steps/sec², the resulting acceleration is a Triangular S-curve. Total time to accelerate is twice the value calculated above, or 3.216 seconds.
S-Curve Acceleration Equations (continued)

Determining Waveforms by Values (continued)

Example 2, Jerk = 400

\[
S_m = \frac{30,000 \text{ steps/sec}}{2} = 15,000 \text{ steps/sec}
\]

\[
J = \frac{100}{a} \Rightarrow j = \frac{Ja}{100}
\]

\[
j = \frac{400(58,000 \text{ steps/sec}^2)}{100}
\]

\[
j = 232,000 \text{ steps/sec}^3
\]

Just as displacement \(= \frac{1}{2}at^2\), speed \(= \frac{1}{2}jt^2\)

\[
15,000 \text{ steps/sec} = \frac{232,000 \text{ steps/sec}^3(t^2)}{2}
\]

\[
t^2 = \frac{15,000 \text{ steps/sec}}{116,000 \text{ steps/sec}^3}
\]

\[
t = 0.3596 \text{ seconds}
\]

Just as speed = at, acceleration = jt

\[
a_f = 232,000 \text{ steps/sec}^3(0.3596 \text{ sec})
\]

\[
a_f = 83,427 \text{ steps/sec}^2
\]

Because \(a_f\) is greater than the programmed acceleration of 58,000 steps/sec\(^2\), the resulting acceleration is a trapezoidal S-curve. As shown in figure R8.7, two additional calculations must be made. The first is the time \((t_1)\) it takes to jerk to the programmed acceleration value. The second is the time \((t_2)\) it takes to accelerate to half of the required change in speed \((S_m)\).

\[
232,000 \text{ steps/sec}^3(t_1) = 58,000 \text{ steps/sec}^2
\]

\[
t_1 = 0.25 \text{ seconds}
\]

Determine speed at \(t_1\): Speed = \(\frac{1}{2}jt^2\)

\[
S_1 = \frac{232,000 \text{ steps/sec}^3(0.25)^2}{2}
\]

\[
S_1 = 7,250 \text{ steps/sec}
\]

Determine remaining change in speed and required time based on programmed acceleration

\[
S_2 = S_m - S_1 = (15,000 - 7,250) \text{ steps/sec}
\]

\[
S_2 = 7,750 \text{ steps/sec}
\]

\[
S_2 = a_c(t_2) \Rightarrow t_2 = S_2/a_c
\]

\[
t_2 = \frac{7,750 \text{ steps/sec}}{58,000 \text{ steps/sec}^2}
\]

\[
t_2 = 0.1336 \text{ seconds}
\]

The time for this acceleration phase is \(2(t_1 + t_2)\), which equals \(2(0.2500 \text{ sec} + 0.1336 \text{ sec})\) or 0.7672 seconds. Time spent in the constant acceleration period is \((2(0.1336))/0.7672)\) or 34.8% of the entire phase.